The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Overview

Habitat-Matterport 3D Dataset (HM3D)

The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000 high-resolution 3D scans (or digital twins) of building-scale residential, commercial, and civic spaces generated from real-world environments.

HM3D is free and available here for academic, non-commercial research. Researchers can use it with FAIR’s Habitat simulator to train embodied agents, such as home robots and AI assistants, at scale.

example

This repository contains the code and instructions to reproduce experiments from our NeurIPS 2021 paper. If you use the HM3D dataset or the experimental code in your research, please cite the HM3D paper.

@inproceedings{ramakrishnan2021hm3d,
  title={Habitat-Matterport 3D Dataset ({HM}3D): 1000 Large-scale 3D Environments for Embodied {AI}},
  author={Santhosh Kumar Ramakrishnan and Aaron Gokaslan and Erik Wijmans and Oleksandr Maksymets and Alexander Clegg and John M Turner and Eric Undersander and Wojciech Galuba and Andrew Westbury and Angel X Chang and Manolis Savva and Yili Zhao and Dhruv Batra},
  booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)},
  year={2021},
  url={https://openreview.net/forum?id=-v4OuqNs5P}
}

Please check out our website for details on downloading and visualizing the HM3D dataset.

Installation instructions

We provide a common set of instructions to setup the environment to run all our experiments.

  1. Clone the HM3D github repository and add it to PYTHONPATH.

    git clone https://github.com/facebookresearch/habitat-matterport3d-dataset.git
    cd habitat-matterport3d-dataset
    export PYTHONPATH=$PYTHONPATH:$PWD
    
  2. Create conda environment and activate it.

    conda create -n hm3d python=3.8.3
    conda activate hm3d
    
  3. Install habitat-sim using conda.

    conda install habitat-sim headless -c conda-forge -c aihabitat
    

    See habitat-sim's installation instructions for more details.

  4. Install trimesh with soft dependencies.

    pip install "trimesh[easy]==3.9.1"
    
  5. Install remaining requirements from pip.

    pip install -r requirements.txt
    

Downloading datasets

In our paper, we benchmarked HM3D against prior indoor scene datasets such as Gibson, MP3D, RoboThor, Replica, and ScanNet.

  • Download each dataset based on these instructions from habitat-sim. In the case of RoboThor, convert the raw scan assets to GLB using assimp.

    assimp export  
         
    
         
  • Once the datasets are download and processed, create environment variables pointing to the corresponding scene paths.

    export GIBSON_ROOT=
         
          
    export MP3D_ROOT=
          
           
    export ROBOTHOR_ROOT=
           
            
    export HM3D_ROOT=
            
             
    export REPLICA_ROOT=
             
               export SCANNET_ROOT=
               
              
             
            
           
          
         

Running experiments

We provide the code for reproducing the results from our paper in different directories.

  • scale_comparison contains the code for comparing the scale of HM3D with other datasets (Tab. 1 in the paper).
  • quality_comparison contains the code for comparing the reconstruction completeness and visual fidelity of HM3D with other datasets (Fig. 4 and Tab. 5 in the paper).
  • pointnav_comparison contains the configs and instructions to train and evaluate PointNav agents on HM3D and other datasets (Tab. 2 and Fig. 7 in the paper).

We further provide README files within each directory with instructions for running the corresponding experiments.

Acknowledgements

We thank all the volunteers who contributed to the dataset curation effort: Harsh Agrawal, Sashank Gondala, Rishabh Jain, Shawn Jiang, Yash Kant, Noah Maestre, Yongsen Mao, Abhinav Moudgil, Sonia Raychaudhuri, Ayush Shrivastava, Andrew Szot, Joanne Truong, Madhawa Vidanapathirana, Joel Ye. We thank our collaborators at Matterport for their contributions to the dataset: Conway Chen, Victor Schwartz, Nicole Rogers, Sachal Dhillon, Raghu Munaswamy, Mark Anderson.

License

The code in this repository is MIT licensed. See the LICENSE file for details. The trained models are considered data derived from the correspondent scene datasets.

Owner
Meta Research
Meta Research
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 01, 2022
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Suture detection PyTorch This repo contains the reference implementation of suture detection model in PyTorch for the paper Point detection through mu

artificial intelligence in the area of cardiovascular healthcare 3 Jul 16, 2022
《LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification》(AAAI 2021) GitHub:

LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification

76 Dec 05, 2022
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
Official PyTorch implementation for paper "Efficient Two-Stage Detection of Human–Object Interactions with a Novel Unary–Pairwise Transformer"

UPT: Unary–Pairwise Transformers This repository contains the official PyTorch implementation for the paper Frederic Z. Zhang, Dylan Campbell and Step

Frederic Zhang 109 Dec 20, 2022
On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition

On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition With the spirit of reproducible research, this repository contains codes requ

0 Feb 24, 2022
TyXe: Pyro-based BNNs for Pytorch users

TyXe: Pyro-based BNNs for Pytorch users TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveragi

87 Jan 03, 2023
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning

MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran

Jaron Lee 11 Oct 19, 2022
View model summaries in PyTorch!

torchinfo (formerly torch-summary) Torchinfo provides information complementary to what is provided by print(your_model) in PyTorch, similar to Tensor

Tyler Yep 1.5k Jan 05, 2023
Happywhale - Whale and Dolphin Identification Silver🥈 Solution (26/1588)

Kaggle-Happywhale Happywhale - Whale and Dolphin Identification Silver 🥈 Solution (26/1588) 竞赛方案思路 图像数据预处理-标志性特征图片裁剪:首先根据开源的标注数据训练YOLOv5x6目标检测模型,将训练集

Franxx 20 Nov 14, 2022
Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are implemented and can be seen in tensorboard.

Sarus published models Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are

Sarus Technologies 39 Aug 19, 2022
Repository for Multimodal AutoML Benchmark

Benchmarking Multimodal AutoML for Tabular Data with Text Fields Repository for the NeurIPS 2021 Dataset Track Submission "Benchmarking Multimodal Aut

Xingjian Shi 44 Nov 24, 2022
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation

Build Type Linux MacOS Windows Build Status OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facia

25.7k Jan 09, 2023
Temporal Segment Networks (TSN) in PyTorch

TSN-Pytorch We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation for TSN as well as oth

1k Jan 03, 2023
MolRep: A Deep Representation Learning Library for Molecular Property Prediction

MolRep: A Deep Representation Learning Library for Molecular Property Prediction Summary MolRep is a Python package for fairly measuring algorithmic p

AI-Health @NSCC-gz 83 Dec 24, 2022
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022