Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Related tags

Deep Learninghsd3
Overview

Hierarchical Skills for Efficient Exploration

This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

  • Code for pre-training and hierarchical learning with HSD-3
  • Code for the baselines we compare to in the paper

Additionally, we provide pre-trained skill policies for the Walker and Humanoid robots considered in the paper.

The benchmark suite can be found in a standalone repository at facebookresearch/bipedal-skills

Prerequisites

Install PyTorch according to the official instructions, for example in a new conda environment. This code-base was tested with PyTorch 1.8 and 1.9.

Then, install remaining requirements via

pip install -r requirements.txt

For optimal performance, we also recommend installing NVidia's PyTorch extensions.

Usage

We use Hydra to handle training configurations, with some defaults that might not make everyone happy. In particular, we disable the default job directory management -- which is good for local development but not desirable for running full experiments. This can be changed by adapting the initial portion of config/common.yaml or by passing something like hydra.run.dir=./outputs/my-custom-string to the commands below.

Pre-training Hierarchical Skills

For pre-training skill policies, use the pretrain.py script (note that this requires a machine with 2 GPUs):

# Walker robot
python pretrain.py -cn walker_pretrain
# Humanoid robot
python pretrain.py -cn humanoid_pretrain

Hierarchical Control

High-level policy training with HSD-3 is done as follows:

# Walker robot
python train.py -cn walker_hsd3
# Humanoid robot
python train.py -cn humanoid_hsd3

The default configuration assumes that a pre-trained skill policy is available at checkpoint-lo.pt. The location can be overriden by setting a new value for agent.lo.init_from (see below for an example). By default, a high-level agent will be trained on the "Hurdles" task. This can be changed by passing env.name=BiskStairs-v1, for example.

Pre-trained skill policies are available here. After unpacking the archive in the top-level directory of this repository, they can be used as follows:

# Walker robot
python train.py -cn walker_hsd3 agent.lo.init_from=$PWD/pretrained-skills/walker.pt
# Humanoid robot
python train.py -cn humanoid_hsd3 agent.lo.init_from=$PWD/pretrained-skills/humanoidpc.pt

Baselines

Individual baselines can be run by passing the following as the -cn argument to train.py (for the Walker robot):

Baseline Configuration name
Soft Actor-Critic walker_sac
DIAYN-C pre-training walker_diaync_pretrain
DIAYN-C HRL walker_diaync_hrl
HIRO-SAC walker_hiro
Switching Ensemble walker_se
HSD-Bandit walker_hsdb
SD walker_sd

By default, walker_sd will select the full goal space. Other goal spaces can be selected by modifying the configuration, e.g., passing subsets=2-3+4 will limit high-level control to X translation (2) and the left foot (3+4).

License

hsd3 is MIT licensed, as found in the LICENSE file.

Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Graph Convolution Simulator (GCS) Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions" Requirements: PyTor

yifan 10 Oct 18, 2022
🤗 Paper Style Guide

🤗 Paper Style Guide (Work in progress, send a PR!) Libraries to Know booktabs natbib cleveref Either seaborn, plotly or altair for graphs algorithmic

Hugging Face 66 Dec 12, 2022
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023
Maximum Spatial Perturbation for Image-to-Image Translation (Official Implementation)

MSPC for I2I This repository is by Yanwu Xu and contains the PyTorch source code to reproduce the experiments in our CVPR2022 paper Maximum Spatial Pe

51 Dec 14, 2022
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022
BMVC 2021 Oral: code for BI-GCN: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation

BMVC 2021 BI-GConv: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation Necassary Dependencies: PyTorch 1.2.0 Python 3.

Yanda Meng 15 Nov 08, 2022
*ObjDetApp* deploys a pytorch model for object detection

*ObjDetApp* deploys a pytorch model for object detection

Will Chao 1 Dec 26, 2021
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals"

The Temporal Robustness of Stochastic Signals Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals" Case stud

0 Oct 28, 2021
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa

Liming Jiang 238 Nov 25, 2022
A minimalist environment for decision-making in autonomous driving

highway-env A collection of environments for autonomous driving and tactical decision-making tasks An episode of one of the environments available in

Edouard Leurent 1.6k Jan 07, 2023
Feedback is important: response-aware feedback mechanism for background based conversation

RFM The code for the paper: "Feedback is important: response-aware feedback mechanism for background based conversation." Requirements python 3.7 pyto

Jiatao Chen 2 Sep 29, 2022
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Håkon Hukkelås 30 Nov 18, 2022
Recurrent Conditional Query Learning

Recurrent Conditional Query Learning (RCQL) This repository contains the Pytorch implementation of One Model Packs Thousands of Items with Recurrent C

Dongda 4 Nov 28, 2022
PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).

NHDRRNet-PyTorch This is the PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020). 0. Differences between Original Paper and

Yutong Zhang 1 Mar 01, 2022
An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow

Fast Transformer This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer

Rishit Dagli 139 Dec 28, 2022
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)

CMUA-Watermark The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is bas

50 Nov 26, 2022
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023