Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Related tags

Deep Learninghsd3
Overview

Hierarchical Skills for Efficient Exploration

This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

  • Code for pre-training and hierarchical learning with HSD-3
  • Code for the baselines we compare to in the paper

Additionally, we provide pre-trained skill policies for the Walker and Humanoid robots considered in the paper.

The benchmark suite can be found in a standalone repository at facebookresearch/bipedal-skills

Prerequisites

Install PyTorch according to the official instructions, for example in a new conda environment. This code-base was tested with PyTorch 1.8 and 1.9.

Then, install remaining requirements via

pip install -r requirements.txt

For optimal performance, we also recommend installing NVidia's PyTorch extensions.

Usage

We use Hydra to handle training configurations, with some defaults that might not make everyone happy. In particular, we disable the default job directory management -- which is good for local development but not desirable for running full experiments. This can be changed by adapting the initial portion of config/common.yaml or by passing something like hydra.run.dir=./outputs/my-custom-string to the commands below.

Pre-training Hierarchical Skills

For pre-training skill policies, use the pretrain.py script (note that this requires a machine with 2 GPUs):

# Walker robot
python pretrain.py -cn walker_pretrain
# Humanoid robot
python pretrain.py -cn humanoid_pretrain

Hierarchical Control

High-level policy training with HSD-3 is done as follows:

# Walker robot
python train.py -cn walker_hsd3
# Humanoid robot
python train.py -cn humanoid_hsd3

The default configuration assumes that a pre-trained skill policy is available at checkpoint-lo.pt. The location can be overriden by setting a new value for agent.lo.init_from (see below for an example). By default, a high-level agent will be trained on the "Hurdles" task. This can be changed by passing env.name=BiskStairs-v1, for example.

Pre-trained skill policies are available here. After unpacking the archive in the top-level directory of this repository, they can be used as follows:

# Walker robot
python train.py -cn walker_hsd3 agent.lo.init_from=$PWD/pretrained-skills/walker.pt
# Humanoid robot
python train.py -cn humanoid_hsd3 agent.lo.init_from=$PWD/pretrained-skills/humanoidpc.pt

Baselines

Individual baselines can be run by passing the following as the -cn argument to train.py (for the Walker robot):

Baseline Configuration name
Soft Actor-Critic walker_sac
DIAYN-C pre-training walker_diaync_pretrain
DIAYN-C HRL walker_diaync_hrl
HIRO-SAC walker_hiro
Switching Ensemble walker_se
HSD-Bandit walker_hsdb
SD walker_sd

By default, walker_sd will select the full goal space. Other goal spaces can be selected by modifying the configuration, e.g., passing subsets=2-3+4 will limit high-level control to X translation (2) and the left foot (3+4).

License

hsd3 is MIT licensed, as found in the LICENSE file.

Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer

Time Series Research with Torch 这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer。 建立原因 相较于mxnet和TF,Torch框架中的神经网络层需要提前指定输入维度: # 建立线性层 TensorF

Chi Zhang 85 Dec 29, 2022
The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

miseval: a metric library for Medical Image Segmentation EVALuation The open-source and free to use Python package miseval was developed to establish

59 Dec 10, 2022
A PyTorch implementation of unsupervised SimCSE

A PyTorch implementation of unsupervised SimCSE

99 Dec 23, 2022
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perform basic tasks.

AI_Personal_Voice_Assistant_Using_Python A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perf

Chumui Tripura 1 Oct 30, 2021
A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods Datasets Because of copyright issues, both the MalwareBazaar dataset

8 Oct 21, 2022
PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022
A PyTorch-centric hybrid classical-quantum machine learning framework

torchquantum A PyTorch-centric hybrid classical-quantum dynamic neural networks framework. News Add a simple example script using quantum gates to do

MIT HAN Lab 400 Jan 02, 2023
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
A Python parser that takes the content of a text file and then reads it into variables.

Text-File-Parser A Python parser that takes the content of a text file and then reads into variables. Input.text File 1. What is your ***? 1. 18 -

Kelvin 0 Jul 26, 2021
Linear algebra python - Number of operations and problems in Linear Algebra and Numerical Linear Algebra

Linear algebra in python Number of operations and problems in Linear Algebra and

Alireza 5 Oct 09, 2022
Telegram chatbot created with deep learning model (LSTM) and telebot library.

Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very

1 Jan 04, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022
The code from the paper Character Transformations for Non-Autoregressive GEC Tagging

Character Transformations for Non-Autoregressive GEC Tagging Milan Straka, Jakub Náplava, Jana Straková Charles University Faculty of Mathematics and

ÚFAL 5 Dec 10, 2022
Arxiv harvester - Poor man's simple harvester for arXiv resources

Poor man's simple harvester for arXiv resources This modest Python script takes

Patrice Lopez 5 Oct 18, 2022