An Analysis Toolkit for Natural Language Generation (Translation, Captioning, Summarization, etc.)

Related tags

Text Data & NLPvizseq
Overview

PyPI CircleCI PyPI - License PyPI - Python Version

VizSeq

VizSeq is a Python toolkit for visual analysis on text generation tasks like machine translation, summarization, image captioning, speech translation and video description. It takes multi-modal sources, text references as well as text predictions as inputs, and analyzes them visually in Jupyter Notebook or a built-in Web App (the former has Fairseq integration). VizSeq also provides a collection of multi-process scorers as a normal Python package.

[Paper] [Documentation] [Blog]

VizSeq Overview VizSeq Teaser

Task Coverage

Source Example Tasks
Text Machine translation, text summarization, dialog generation, grammatical error correction, open-domain question answering
Image Image captioning, image question answering, optical character recognition
Audio Speech recognition, speech translation
Video Video description
Multimodal Multimodal machine translation

Metric Coverage

Accelerated with multi-processing/multi-threading.

Type Metrics
N-gram-based BLEU (Papineni et al., 2002), NIST (Doddington, 2002), METEOR (Banerjee et al., 2005), TER (Snover et al., 2006), RIBES (Isozaki et al., 2010), chrF (Popović et al., 2015), GLEU (Wu et al., 2016), ROUGE (Lin, 2004), CIDEr (Vedantam et al., 2015), WER
Embedding-based LASER (Artetxe and Schwenk, 2018), BERTScore (Zhang et al., 2019)

Getting Started

Installation

VizSeq requires Python 3.6+ and currently runs on Unix/Linux and macOS/OS X. It will support Windows as well in the future.

You can install VizSeq from PyPI repository:

$ pip install vizseq

Or install it from source:

$ git clone https://github.com/facebookresearch/vizseq
$ cd vizseq
$ pip install -e .

Documentation

Jupyter Notebook Examples

Fairseq integration

Web App Example

Download example data:

$ git clone https://github.com/facebookresearch/vizseq
$ cd vizseq
$ bash get_example_data.sh

Launch the web server:

$ python -m vizseq.server --port 9001 --data-root ./examples/data

And then, navigate to the following URL in your web browser:

http://localhost:9001

License

VizSeq is licensed under MIT. See the LICENSE file for details.

Citation

Please cite as

@inproceedings{wang2019vizseq,
  title = {VizSeq: A Visual Analysis Toolkit for Text Generation Tasks},
  author = {Changhan Wang, Anirudh Jain, Danlu Chen, Jiatao Gu},
  booktitle = {In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing: System Demonstrations},
  year = {2019},
}

Contact

Changhan Wang ([email protected]), Jiatao Gu ([email protected])

PyTorch implementation of the paper: Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding

Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding This repository contains the official PyTorch implementation of th

Xiao Xu 26 Dec 14, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

LancoPKU 105 Jan 03, 2023
EMNLP'2021: Can Language Models be Biomedical Knowledge Bases?

BioLAMA BioLAMA is biomedical factual knowledge triples for probing biomedical LMs. The triples are collected and pre-processed from three sources: CT

DMIS Laboratory - Korea University 41 Nov 18, 2022
This is the source code of RPG (Reward-Randomized Policy Gradient)

RPG (Reward-Randomized Policy Gradient) Zhenggang Tang*, Chao Yu*, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Shaolei Du, Yu Wang, Yi Wu (

40 Nov 25, 2022
Negative sampling for solving the unlabeled entity problem in NER. ICLR-2021 paper: Empirical Analysis of Unlabeled Entity Problem in Named Entity Recognition.

Negative Sampling for NER Unlabeled entity problem is prevalent in many NER scenarios (e.g., weakly supervised NER). Our paper in ICLR-2021 proposes u

Yangming Li 128 Dec 29, 2022
A Fast Command Analyser based on Dict and Pydantic

Alconna Alconna 隶属于ArcletProject, 在Cesloi内有内置 Alconna 是 Cesloi-CommandAnalysis 的高级版,支持解析消息链 一般情况下请当作简易的消息链解析器/命令解析器 文档 暂时的文档 Example from arclet.alcon

19 Jan 03, 2023
UniSpeech - Large Scale Self-Supervised Learning for Speech

UniSpeech The family of UniSpeech: WavLM (arXiv): WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing UniSpeech (ICML 202

Microsoft 281 Dec 15, 2022
Easy-to-use CPM for Chinese text generation

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

382 Jan 07, 2023
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition

CRNN paper:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 1. create your ow

Tsukinousag1 3 Apr 02, 2022
Neural network models for joint POS tagging and dependency parsing (CoNLL 2017-2018)

Neural Network Models for Joint POS Tagging and Dependency Parsing Implementations of joint models for POS tagging and dependency parsing, as describe

Dat Quoc Nguyen 152 Sep 02, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

9 Jan 08, 2023
XLNet: Generalized Autoregressive Pretraining for Language Understanding

Introduction XLNet is a new unsupervised language representation learning method based on a novel generalized permutation language modeling objective.

Zihang Dai 6k Jan 07, 2023
Kurumi ChatBot

KurumiChatBot Just another Telegram AI chat bot written in Python using Pyrogram. A public running instance can be found on telegram as @TokisakiChatB

Yoga Pranata 3 Jun 28, 2022
An assignment on creating a minimalist neural network toolkit for CS11-747

minnn by Graham Neubig, Zhisong Zhang, and Divyansh Kaushik This is an exercise in developing a minimalist neural network toolkit for NLP, part of Car

Graham Neubig 63 Dec 29, 2022
Synthetic data for the people.

zpy: Synthetic data in Blender. Website • Install • Docs • Examples • CLI • Contribute • Licence Abstract Collecting, labeling, and cleaning data for

Zumo Labs 253 Dec 21, 2022
Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET

Training COMET using seq2seq setting Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET. The codes are modified from run_summarizati

tqfang 9 Dec 17, 2022
NLP command-line assistant powered by OpenAI

NLP command-line assistant powered by OpenAI

Axel 16 Dec 09, 2022
[ICLR 2021 Spotlight] Pytorch implementation for "Long-tailed Recognition by Routing Diverse Distribution-Aware Experts."

RIDE: Long-tailed Recognition by Routing Diverse Distribution-Aware Experts. by Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu and Stella X. Yu at UC

Xudong (Frank) Wang 205 Dec 16, 2022
Constituency Tree Labeling Tool

Constituency Tree Labeling Tool The purpose of this package is to solve the constituency tree labeling problem. Look from the dataset labeled by NLTK,

张宇 6 Dec 20, 2022
Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time.

Wordle_Bot Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time. It will log onto the wordle website and en

Lucas Polidori 15 Dec 11, 2022