A look-ahead multi-entity Transformer for modeling coordinated agents.

Overview

baller2vec++

This is the repository for the paper:

Michael A. Alcorn and Anh Nguyen. baller2vec++: A Look-Ahead Multi-Entity Transformer For Modeling Coordinated Agents. arXiv. 2021.

To learn statistically dependent agent trajectories, baller2vec++ uses a specially designed self-attention mask to simultaneously process three different sets of features vectors in a single Transformer. The three sets of feature vectors consist of location feature vectors like those found in baller2vec, look-ahead trajectory feature vectors, and starting location feature vectors. This design allows the model to integrate information about concurrent agent trajectories through multiple Transformer layers without seeing the future (in contrast to baller2vec).
Training sample baller2vec baller2vec++

When trained on a dataset of perfectly coordinated agent trajectories, the trajectories generated by baller2vec are completely uncoordinated while the trajectories generated by baller2vec++ are perfectly coordinated.

Ground truth baller2vec baller2vec baller2vec
Ground truth baller2vec++ baller2vec++ baller2vec++

While baller2vec occasionally generates realistic trajectories for the red defender, it also makes egregious errors. In contrast, the trajectories generated by baller2vec++ often seem plausible. The red player was placed last in the player order when generating his trajectory with baller2vec++.

Citation

If you use this code for your own research, please cite:

@article{alcorn2021baller2vec,
   title={\texttt{baller2vec++}: A Look-Ahead Multi-Entity Transformer For Modeling Coordinated Agents},
   author={Alcorn, Michael A. and Nguyen, Anh},
   journal={arXiv preprint arXiv:2104.11980},
   year={2021}
}

Training baller2vec++

Setting up .basketball_profile

After you've cloned the repository to your desired location, create a file called .basketball_profile in your home directory:

nano ~/.basketball_profile

and copy and paste in the contents of .basketball_profile, replacing each of the variable values with paths relevant to your environment. Next, add the following line to the end of your ~/.bashrc:

source ~/.basketball_profile

and either log out and log back in again or run:

source ~/.bashrc

You should now be able to copy and paste all of the commands in the various instructions sections. For example:

echo ${PROJECT_DIR}

should print the path you set for PROJECT_DIR in .basketball_profile.

Installing the necessary Python packages

cd ${PROJECT_DIR}
pip3 install --upgrade -r requirements.txt

Organizing the play-by-play and tracking data

  1. Copy events.zip (which I acquired from here [mirror here] using https://downgit.github.io) to the DATA_DIR directory and unzip it:
mkdir -p ${DATA_DIR}
cp ${PROJECT_DIR}/events.zip ${DATA_DIR}
cd ${DATA_DIR}
unzip -q events.zip
rm events.zip

Descriptions for the various EVENTMSGTYPEs can be found here (mirror here).

  1. Clone the tracking data from here (mirror here) to the DATA_DIR directory:
cd ${DATA_DIR}
git clone [email protected]:linouk23/NBA-Player-Movements.git

A description of the tracking data can be found here.

Generating the training data

cd ${PROJECT_DIR}
nohup python3 generate_game_numpy_arrays.py > data.log &

You can monitor its progress with:

top

or:

ls -U ${GAMES_DIR} | wc -l

There should be 1,262 NumPy arrays (corresponding to 631 X/y pairs) when finished.

Running the training script

Run (or copy and paste) the following script, editing the variables as appropriate.

#!/usr/bin/env bash

JOB=$(date +%Y%m%d%H%M%S)

echo "train:" >> ${JOB}.yaml
task=basketball  # "basketball" or "toy".
echo "  task: ${task}" >> ${JOB}.yaml
if [[ "$task" = "basketball" ]]
then

    echo "  train_valid_prop: 0.95" >> ${JOB}.yaml
    echo "  train_prop: 0.95" >> ${JOB}.yaml
    echo "  train_samples_per_epoch: 20000" >> ${JOB}.yaml
    echo "  valid_samples: 1000" >> ${JOB}.yaml
    echo "  workers: 10" >> ${JOB}.yaml
    echo "  learning_rate: 1.0e-5" >> ${JOB}.yaml
    echo "  patience: 20" >> ${JOB}.yaml

    echo "dataset:" >> ${JOB}.yaml
    echo "  hz: 5" >> ${JOB}.yaml
    echo "  secs: 4.2" >> ${JOB}.yaml
    echo "  player_traj_n: 11" >> ${JOB}.yaml
    echo "  max_player_move: 4.5" >> ${JOB}.yaml

    echo "model:" >> ${JOB}.yaml
    echo "  embedding_dim: 20" >> ${JOB}.yaml
    echo "  sigmoid: none" >> ${JOB}.yaml
    echo "  mlp_layers: [128, 256, 512]" >> ${JOB}.yaml
    echo "  nhead: 8" >> ${JOB}.yaml
    echo "  dim_feedforward: 2048" >> ${JOB}.yaml
    echo "  num_layers: 6" >> ${JOB}.yaml
    echo "  dropout: 0.0" >> ${JOB}.yaml
    echo "  b2v: False" >> ${JOB}.yaml

else

    echo "  workers: 10" >> ${JOB}.yaml
    echo "  learning_rate: 1.0e-4" >> ${JOB}.yaml

    echo "model:" >> ${JOB}.yaml
    echo "  embedding_dim: 20" >> ${JOB}.yaml
    echo "  sigmoid: none" >> ${JOB}.yaml
    echo "  mlp_layers: [64, 128]" >> ${JOB}.yaml
    echo "  nhead: 4" >> ${JOB}.yaml
    echo "  dim_feedforward: 512" >> ${JOB}.yaml
    echo "  num_layers: 2" >> ${JOB}.yaml
    echo "  dropout: 0.0" >> ${JOB}.yaml
    echo "  b2v: True" >> ${JOB}.yaml

fi

# Save experiment settings.
mkdir -p ${EXPERIMENTS_DIR}/${JOB}
mv ${JOB}.yaml ${EXPERIMENTS_DIR}/${JOB}/

gpu=0
cd ${PROJECT_DIR}
nohup python3 train_baller2vecplusplus.py ${JOB} ${gpu} > ${EXPERIMENTS_DIR}/${JOB}/train.log &
Owner
Michael A. Alcorn
Brute-forcing my way through life.
Michael A. Alcorn
ChatterBot is a machine learning, conversational dialog engine for creating chat bots

ChatterBot ChatterBot is a machine-learning based conversational dialog engine build in Python which makes it possible to generate responses based on

Gunther Cox 12.8k Jan 03, 2023
Sploitus - Command line search tool for sploitus.com. Think searchsploit, but with more POCs

Sploitus Command line search tool for sploitus.com. Think searchsploit, but with

watchdog2000 5 Mar 07, 2022
A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You can find two approaches for achieving this in this repo.

multitask-learning-transformers A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You

Shahrukh Khan 48 Jan 02, 2023
Finetune gpt-2 in google colab

gpt-2-colab finetune gpt-2 in google colab sample result (117M) from retraining on A Tale of Two Cities by Charles Di

212 Jan 02, 2023
ProtFeat is protein feature extraction tool that utilizes POSSUM and iFeature.

Description: ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes a total of 39

GOKHAN OZSARI 5 Dec 16, 2022
Precision Medicine Knowledge Graph (PrimeKG)

PrimeKG Website | bioRxiv Paper | Harvard Dataverse Precision Medicine Knowledge Graph (PrimeKG) presents a holistic view of diseases. PrimeKG integra

Machine Learning for Medicine and Science @ Harvard 103 Dec 10, 2022
Python functions for summarizing and improving voice dictation input.

Helpmespeak Help me speak uses Python functions for summarizing and improving voice dictation input. Get started with OpenAI gpt-3 OpenAI is a amazing

Margarita Humanitarian Foundation 6 Dec 17, 2022
This is my reading list for my PhD in AI, NLP, Deep Learning and more.

This is my reading list for my PhD in AI, NLP, Deep Learning and more.

Zhong Peixiang 156 Dec 21, 2022
Weird Sort-and-Compress Thing

Weird Sort-and-Compress Thing A weird integer sorting + compression algorithm inspired by a conversation with Luthingx (it probably already exists by

Douglas 1 Jan 03, 2022
Japanese Long-Unit-Word Tokenizer with RemBertTokenizerFast of Transformers

Japanese-LUW-Tokenizer Japanese Long-Unit-Word (国語研長単位) Tokenizer for Transformers based on 青空文庫 Basic Usage from transformers import RemBertToken

Koichi Yasuoka 3 Dec 22, 2021
Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Ankur Dhuriya 10 Oct 13, 2022
Opal-lang - A WIP programming language based on Python

thanks to aphitorite for the beautiful logo! opal opal is a WIP transcompiled pr

3 Nov 04, 2022
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
Minimal GUI for accessing the Watson Text to Speech service.

Description Minimal graphical application for accessing the Watson Text to Speech service. Requirements Python 3 plus all dependencies listed in requi

Moritz Maxeiner 1 Oct 22, 2021
An open-source NLP library: fast text cleaning and preprocessing.

An open-source NLP library: fast text cleaning and preprocessing

Iaroslav 21 Mar 18, 2022
nlpcommon is a python Open Source Toolkit for text classification.

nlpcommon nlpcommon, Python Text Tool. Guide Feature Install Usage Dataset Contact Cite Reference Feature nlpcommon is a python Open Source

xuming 3 May 29, 2022
Modified GPT using average pooling to reduce the softmax attention memory constraints.

NLP-GPT-Upsampling This repository contains an implementation of Open AI's GPT Model. In particular, this implementation takes inspiration from the Ny

WD 1 Dec 03, 2021
customer care chatbot made with Rasa Open Source.

Customer Care Bot Customer care bot for ecomm company which can solve faq and chitchat with users, can contact directly to team. 🛠 Features Basic E-c

Dishant Gandhi 23 Oct 27, 2022
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

Tencent 633 Dec 28, 2022