ProtFeat is protein feature extraction tool that utilizes POSSUM and iFeature.

Overview

Linux version made-with-python Python GitHub license Open Source Love svg1

Description:

ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes a total of 39 distinct protein feature extraction methods (protein descriptors) using 21 PSSM-based protein descriptors from POSSUM and 18 protein descriptors from iFeature.

POSSUM (Position-Specific Scoring matrix-based feature generator for machine learning), a versatile toolkit with an online web server that can generate 21 types of PSSM-based feature descriptors, thereby addressing a crucial need for bioinformaticians and computational biologists.

iFeature, a versatile Python-based toolkit for generating various numerical feature representation schemes for both protein and peptide sequences. iFeature is capable of calculating and extracting a comprehensive spectrum of 18 major sequence encoding schemes that encompass 53 different types of feature descriptors.

Installation

ProtFeat is a python package for feature extracting from protein sequences written in Python 3.9. ProtFeat was developed and tested in Ubuntu 20.04 LTS. Please make sure that you have Anaconda installed on your computer and run the below commands to install requirements. Dependencies are available in requirements.txt file.

conda create -n protFeat_env python=3.9
conda activate protFeat_env

How to run ProtFeat to extract the protein features

Run the following commands in the given order:

To use ProtFeat as a python package:

pip install protFeat

Then, you may use protFeat as the following in python:

import protFeat
from protFeat.feature_extracter import extract_protein_feature, usage
usage()
extract_protein_feature(protein_feature, place_protein_id, input_folder, fasta_file_name)

For example,

extract_protein_feature("AAC", 1, "input_folder", "sample")

To use ProtFeat from terminal:

Clone the Git Repository.

git clone https://github.com/gozsari/ProtFeat

In terminal or command line navigate into protFeat folder.

cd ProtFeat

Install the requirements by the running the following command.

pip install -r requirements.txt

Altenatively you may run ProtFeat from the terminal as the following:

cd src
python protFeat_command_line.py --pf protein_feature --ppid place_protein_id --inpf input_folder --fname fasta_file_name

For example,

python protFeat_command_line.py --pf AAC --ppid 1 --inpf input_folder --fname sample

Explanation of Parameters

protein_feature: {string}, (default = 'aac_pssm'): one of the protein descriptors in POSSUM and iFeature.

POSSUM descriptors:

aac_pssm, d_fpssm, smoothed_pssm, ab_pssm, pssm_composition, rpm_pssm,
s_fpssm, dpc_pssm, k_separated_bigrams_pssm, eedp, tpc, edp, rpssm,
pse_pssm, dp_pssm, pssm_ac, pssm_cc, aadp_pssm, aatp, medp , or all_POSSUM

Note: all_POSSUM extracts the features of all (21) POSSUM protein descriptors.

iFeature descriptors:

AAC, PAAC, APAAC, DPC, GAAC, CKSAAP, CKSAAGP, GDPC, Moran, Geary,
NMBroto, CTDC, CTDD, CTDT, CTriad, KSCTriad, SOCNumber, QSOrder, or all_iFeature

Note: all_iFeature extracts the features of all (18) iFeature protein descriptors.

place_protein_id: {int}, (default = 1): It indicates the place of protein id in fasta header. e.g. fasta header: >sp|O27002|....|....|...., seperate the header wrt. '|' then >sp is in the zeroth position, protein id in the first(1) position.

input_folder: {string}, (default = 'input_folder'}: it is the path to the folder that contains the fasta file.

fasta_file_name: {string}, (default ='sample'): it is the name of the fasta file exclude the '.fasta' extension.

Input file

It must be in fasta format.

Output file

The extracted feature files will be located under feature_extraction_output folder with the name: fasta_file_name_protein_feature.txt (e.g. sample_AAC.txt).

The content of the output files:

  • The output file is tab-seperated.
  • Each row corresponds to the extracted features of the protein sequence.
  • The first column of each row is UniProtKB id of the proteins, the rest is extracted features of the protein sequence.

Tables of the available protein descriptors

Table 1: Protein descriptors obtained from the POSSUM tool.

Descriptor group Protein descriptor Number of dimensions
Row Transformations AAC-PSSM
D-FPSSM
smoothed-PSMM
AB-PSSM
PSSM-composition
RPM-PSSM
S-FPSSM
20
20
1000
400
400
400
400
Column Transformation DPC-PSSM
k-seperated-bigrams-PSSM                    
tri-gram-PSSM
EEDP
TPC
400
400
8000
4000
400
Mixture of row and column transformation EDP
RPSSM
Pre-PSSM
DP-PSSM
PSSM-AC
PSSM-CC
20
110
40
240
200
3800
Combination of above descriptors AADP-PSSSM
AATP
MEDP
420
420
420

Table 2: Protein descriptors obtained from the iFeature tool.
Descriptor group Protein descriptor Number of dimensions
Amino acid composition Amino acid composition (AAC)
Composition of k-spaced amino acid pairs (CKSAAP)
Dipeptide composition (DPC)
20
2400
400
Grouped amino acid composition Grouped amino acid composition (GAAC)
Composition of k-spaced amino acid group pairs (CKSAAGP)
Grouped dipeptide composition (GDPC)
5
150
25
Autocorrelation Moran (Moran)
Geary (Geary)
Normalized Moreau-Broto (NMBroto)
240
240
240
C/T/D Composition (CTDC)
Transition (CTDT)
Distribution (CTDD)
39
39
195
Conjoint triad Conjoint triad (CTriad)
Conjoint k-spaced triad (KSCTriad)
343
343*(k+1)
Quasi-sequence-order Sequence-order-coupling number (SOCNumber)
Quasi-sequence-order descriptors (QSOrder)
60
100
Pseudo-amino acid composition Pseudo-amino acid composition (PAAC)
Amphiphilic PAAC (APAAC)
50
80

License

MIT License

ProtFeat Copyright (C) 2020 CanSyL

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

You might also like...
An Open-Source Package for Neural Relation Extraction (NRE)

OpenNRE We have a DEMO website (http://opennre.thunlp.ai/). Try it out! OpenNRE is an open-source and extensible toolkit that provides a unified frame

SpikeX - SpaCy Pipes for Knowledge Extraction

SpikeX is a collection of pipes ready to be plugged in a spaCy pipeline. It aims to help in building knowledge extraction tools with almost-zero effort.

Datasets of Automatic Keyphrase Extraction

This repository contains 20 annotated datasets of Automatic Keyphrase Extraction made available by the research community. Following are the datasets and the original papers that proposed them. If you know more datasets, and want to contribute, please, notify me.

open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

中文开放信息抽取系统, open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"

GDAP The code of paper "Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"" Event Datasets Prep

Utilizing RBERT model for KLUE Relation Extraction task

RBERT for Relation Extraction task for KLUE Project Description Relation Extraction task is one of the task of Korean Language Understanding Evaluatio

Spert NLP Relation Extraction API deployed with torchserve for inference

SpERT torchserve Spert_torchserve is the Relation Extraction model (SpERT)Span-based Entity and Relation Transformer API deployed with pytorch/serve.

Code to reproduce the results of the paper 'Towards Realistic Few-Shot Relation Extraction' (EMNLP 2021)

Realistic Few-Shot Relation Extraction This repository contains code to reproduce the results in the paper "Towards Realistic Few-Shot Relation Extrac

Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

Releases(protein-feature-extraction)
  • protein-feature-extraction(Apr 12, 2022)

    ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes 39 distinct protein feature extraction methods using 21 PSSM-based protein descriptors from POSSUM and 18 protein descriptors from iFeature.

    Source code(tar.gz)
    Source code(zip)
Owner
GOKHAN OZSARI
Research and Teaching Assistant, at CEng, METU
GOKHAN OZSARI
Training code of Spatial Time Memory Network. Semi-supervised video object segmentation.

Training-code-of-STM This repository fully reproduces Space-Time Memory Networks Performance on Davis17 val set&Weights backbone training stage traini

haochen wang 128 Dec 11, 2022
Neural network models for joint POS tagging and dependency parsing (CoNLL 2017-2018)

Neural Network Models for Joint POS Tagging and Dependency Parsing Implementations of joint models for POS tagging and dependency parsing, as describe

Dat Quoc Nguyen 152 Sep 02, 2022
Leon is an open-source personal assistant who can live on your server.

Leon Your open-source personal assistant. Website :: Documentation :: Roadmap :: Contributing :: Story 👋 Introduction Leon is an open-source personal

Leon AI 11.7k Dec 30, 2022
ConferencingSpeech2022; Non-intrusive Objective Speech Quality Assessment (NISQA) Challenge

ConferencingSpeech 2022 challenge This repository contains the datasets list and scripts required for the ConferencingSpeech 2022 challenge. For more

21 Dec 02, 2022
使用pytorch+transformers复现了SimCSE论文中的有监督训练和无监督训练方法

SimCSE复现 项目描述 SimCSE是一种简单但是很巧妙的NLP对比学习方法,创新性地引入Dropout的方式,对样本添加噪声,从而达到对正样本增强的目的。 该框架的训练目的为:对于batch中的每个样本,拉近其与正样本之间的距离,拉远其与负样本之间的距离,使得模型能够在大规模无监督语料(也可以

58 Dec 20, 2022
A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:

A Python package implementing a new model for text classification with visualization tools for Explainable AI 🍣 Online live demos: http://tworld.io/s

Sergio Burdisso 285 Jan 02, 2023
Python library for processing Chinese text

SnowNLP: Simplified Chinese Text Processing SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob

Rui Wang 6k Jan 02, 2023
Just a Basic like Language for Zeno INC

zeno-basic-language Just a Basic like Language for Zeno INC This is written in 100% python. this is basic language like language. so its not for big p

Voidy Devleoper 1 Dec 18, 2021
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models

Graformer The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models Graformer (also named BridgeTransformer in t

22 Dec 14, 2022
T‘rex Park is a Youzan sponsored project. Offering Chinese NLP and image models pretrained from E-commerce datasets

T‘rex Park is a Youzan sponsored project. Offering Chinese NLP and image models pretrained from E-commerce datasets (product titles, images, comments, etc.).

55 Nov 22, 2022
Python SDK for working with Voicegain Speech-to-Text

Voicegain Speech-to-Text Python SDK Python SDK for the Voicegain Speech-to-Text API. This API allows for large vocabulary speech-to-text transcription

Voicegain 3 Dec 14, 2022
Non-Autoregressive Predictive Coding

Non-Autoregressive Predictive Coding This repository contains the implementation of Non-Autoregressive Predictive Coding (NPC) as described in the pre

Alexander H. Liu 43 Nov 15, 2022
EasyTransfer is designed to make the development of transfer learning in NLP applications easier.

EasyTransfer is designed to make the development of transfer learning in NLP applications easier. The literature has witnessed the success of applying

Alibaba 819 Jan 03, 2023
Implementation of Token Shift GPT - An autoregressive model that solely relies on shifting the sequence space for mixing

Token Shift GPT Implementation of Token Shift GPT - An autoregressive model that relies solely on shifting along the sequence dimension and feedforwar

Phil Wang 32 Oct 14, 2022
A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

Libo Qin 132 Nov 25, 2022
This simple Python program calculates a love score based on your and your crush's full names in English

This simple Python program calculates a love score based on your and your crush's full names in English. There is no logic or reason in the calculation behind the love score. The calculation could ha

p.katekomol 1 Jan 24, 2022
⛵️The official PyTorch implementation for "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing" (EMNLP 2020).

BERT-of-Theseus Code for paper "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing". BERT-of-Theseus is a new compressed BERT by progre

Kevin Canwen Xu 284 Nov 25, 2022
A list of NLP(Natural Language Processing) tutorials

NLP Tutorial A list of NLP(Natural Language Processing) tutorials built on PyTorch. Table of Contents A step-by-step tutorial on how to implement and

Allen Lee 1.3k Dec 25, 2022
text to speech toolkit. 好用的中文语音合成工具箱,包含语音编码器、语音合成器、声码器和可视化模块。

ttskit Text To Speech Toolkit: 语音合成工具箱。 安装 pip install -U ttskit 注意 可能需另外安装的依赖包:torch,版本要求torch=1.6.0,=1.7.1,根据自己的实际环境安装合适cuda或cpu版本的torch。 ttskit的

KDD 483 Jan 04, 2023