An Open-Source Package for Neural Relation Extraction (NRE)

Overview

OpenNRE

CircleCI

We have a DEMO website (http://opennre.thunlp.ai/). Try it out!

OpenNRE is an open-source and extensible toolkit that provides a unified framework to implement relation extraction models. This package is designed for the following groups:

  • New to relation extraction: We have hand-by-hand tutorials and detailed documents that can not only enable you to use relation extraction tools, but also help you better understand the research progress in this field.
  • Developers: Our easy-to-use interface and high-performance implementation can acclerate your deployment in the real-world applications. Besides, we provide several pretrained models which can be put into production without any training.
  • Researchers: With our modular design, various task settings and metric tools, you can easily carry out experiments on your own models with only minor modification. We have also provided several most-used benchmarks for different settings of relation extraction.
  • Anyone who need to submit an NLP homework to impress their professors: With state-of-the-art models, our package can definitely help you stand out among your classmates!

This package is mainly contributed by Tianyu Gao, Xu Han, Shulian Cao, Lumin Tang, Yankai Lin, Zhiyuan Liu

What is Relation Extraction

Relation extraction is a natural language processing (NLP) task aiming at extracting relations (e.g., founder of) between entities (e.g., Bill Gates and Microsoft). For example, from the sentence Bill Gates founded Microsoft, we can extract the relation triple (Bill Gates, founder of, Microsoft).

Relation extraction is a crucial technique in automatic knowledge graph construction. By using relation extraction, we can accumulatively extract new relation facts and expand the knowledge graph, which, as a way for machines to understand the human world, has many downstream applications like question answering, recommender system and search engine.

How to Cite

A good research work is always accompanied by a thorough and faithful reference. If you use or extend our work, please cite the following paper:

@inproceedings{han-etal-2019-opennre,
    title = "{O}pen{NRE}: An Open and Extensible Toolkit for Neural Relation Extraction",
    author = "Han, Xu and Gao, Tianyu and Yao, Yuan and Ye, Deming and Liu, Zhiyuan and Sun, Maosong",
    booktitle = "Proceedings of EMNLP-IJCNLP: System Demonstrations",
    year = "2019",
    url = "https://www.aclweb.org/anthology/D19-3029",
    doi = "10.18653/v1/D19-3029",
    pages = "169--174"
}

It's our honor to help you better explore relation extraction with our OpenNRE toolkit!

Papers and Document

If you want to learn more about neural relation extraction, visit another project of ours (NREPapers).

You can refer to our document for more details about this project.

Install

Install as A Python Package

We are now working on deploy OpenNRE as a Python package. Coming soon!

Using Git Repository

Clone the repository from our github page (don't forget to star us!)

git clone https://github.com/thunlp/OpenNRE.git

If it is too slow, you can try

git clone https://github.com/thunlp/OpenNRE.git --depth 1

Then install all the requirements:

pip install -r requirements.txt

Note: Please choose appropriate PyTorch version based on your machine (related to your CUDA version). For details, refer to https://pytorch.org/.

Then install the package with

python setup.py install 

If you also want to modify the code, run this:

python setup.py develop

Note that we have excluded all data and pretrain files for fast deployment. You can manually download them by running scripts in the benchmark and pretrain folders. For example, if you want to download FewRel dataset, you can run

bash benchmark/download_fewrel.sh

Easy Start

Make sure you have installed OpenNRE as instructed above. Then import our package and load pre-trained models.

>>> import opennre
>>> model = opennre.get_model('wiki80_cnn_softmax')

Note that it may take a few minutes to download checkpoint and data for the first time. Then use infer to do sentence-level relation extraction

>>> model.infer({'text': 'He was the son of Máel Dúin mac Máele Fithrich, and grandson of the high king Áed Uaridnach (died 612).', 'h': {'pos': (18, 46)}, 't': {'pos': (78, 91)}})
('father', 0.5108704566955566)

You will get the relation result and its confidence score.

For now, we have the following available models:

  • wiki80_cnn_softmax: trained on wiki80 dataset with a CNN encoder.
  • wiki80_bert_softmax: trained on wiki80 dataset with a BERT encoder.
  • wiki80_bertentity_softmax: trained on wiki80 dataset with a BERT encoder (using entity representation concatenation).
  • tacred_bert_softmax: trained on TACRED dataset with a BERT encoder.
  • tacred_bertentity_softmax: trained on TACRED dataset with a BERT encoder (using entity representation concatenation).

Training

You can train your own models on your own data with OpenNRE. In example folder we give example training codes for supervised RE models and bag-level RE models. You can either use our provided datasets or your own datasets.

Google Group

If you want to receive our update news or take part in discussions, please join our Google Group

Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
Yuqing Xie 2 Feb 17, 2022
Paddle2.x version AI-Writer

Paddle2.x 版本AI-Writer 用魔改 GPT 生成网文。Tuned GPT for novel generation.

yujun 74 Jan 04, 2023
The proliferation of disinformation across social media has led the application of deep learning techniques to detect fake news.

Fake News Detection Overview The proliferation of disinformation across social media has led the application of deep learning techniques to detect fak

Kushal Shingote 1 Feb 08, 2022
ACL22 paper: Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost

Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost LOVE is accpeted by ACL22 main conference as a long pape

Lihu Chen 32 Jan 03, 2023
This is a modification of the OpenAI-CLIP repository of moein-shariatnia

This is a modification of the OpenAI-CLIP repository of moein-shariatnia

Sangwon Beak 2 Mar 04, 2022
CDLA: A Chinese document layout analysis (CDLA) dataset

CDLA: A Chinese document layout analysis (CDLA) dataset 介绍 CDLA是一个中文文档版面分析数据集,面向中文文献类(论文)场景。包含以下10个label: 正文 标题 图片 图片标题 表格 表格标题 页眉 页脚 注释 公式 Text Title

buptlihang 84 Dec 28, 2022
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
A Python/Pytorch app for easily synthesising human voices

Voice Cloning App A Python/Pytorch app for easily synthesising human voices Documentation Discord Server Video guide Voice Sharing Hub FAQ's System Re

Ben Andrew 840 Jan 04, 2023
Japanese Long-Unit-Word Tokenizer with RemBertTokenizerFast of Transformers

Japanese-LUW-Tokenizer Japanese Long-Unit-Word (国語研長単位) Tokenizer for Transformers based on 青空文庫 Basic Usage from transformers import RemBertToken

Koichi Yasuoka 3 Dec 22, 2021
What are the best Systems? New Perspectives on NLP Benchmarking

What are the best Systems? New Perspectives on NLP Benchmarking In Machine Learning, a benchmark refers to an ensemble of datasets associated with one

Pierre Colombo 12 Nov 03, 2022
Python code for ICLR 2022 spotlight paper EViT: Expediting Vision Transformers via Token Reorganizations

Expediting Vision Transformers via Token Reorganizations This repository contain

Youwei Liang 101 Dec 26, 2022
Generate custom detailed survey paper with topic clustered sections and proper citations, from just a single query in just under 30 mins !!

Auto-Research A no-code utility to generate a detailed well-cited survey with topic clustered sections (draft paper format) and other interesting arti

Sidharth Pal 20 Dec 14, 2022
Tools and data for measuring the popularity & growth of various programming languages.

growth-data Tools and data for measuring the popularity & growth of various programming languages. Install the dependencies $ pip install -r requireme

3 Jan 06, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 217 Dec 05, 2022
DLO8012: Natural Language Processing & CSL804: Computational Lab - II

NATURAL-LANGUAGE-PROCESSING-AND-COMPUTATIONAL-LAB-II DLO8012: NLP & CSL804: CL-II [SEMESTER VIII] Syllabus NLP - Reference Books THE WALL MEGA SATISH

AMEY THAKUR 7 Apr 28, 2022
Idea is to build a model which will take keywords as inputs and generate sentences as outputs.

keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: Marketing Sea

Gagan Bhatia 364 Jan 03, 2023
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

🤗 Contributing to OpenSpeech 🤗 OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform ta

Openspeech TEAM 513 Jan 03, 2023
Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Ankur Dhuriya 10 Oct 13, 2022
Graphical user interface for Argos Translate

Argos Translate GUI Website | GitHub | PyPI Graphical user interface for Argos Translate. Install pip3 install argostranslategui

Argos Open Tech 16 Dec 07, 2022
Natural language Understanding Toolkit

Natural language Understanding Toolkit TOC Requirements Installation Documentation CLSCL NER References Requirements To install nut you need: Python 2

Peter Prettenhofer 119 Oct 08, 2022