A pre-trained model with multi-exit transformer architecture.

Overview

ElasticBERT

This repository contains finetuning code and checkpoints for ElasticBERT.

Towards Efficient NLP: A Standard Evaluation and A Strong Baseline

Xiangyang Liu, Tianxiang Sun, Junliang He, Lingling Wu, Xinyu Zhang, Hao Jiang, Zhao Cao, Xuanjing Huang, Xipeng Qiu

Requirements

We recommend using Anaconda for setting up the environment of experiments:

conda create -n elasticbert python=3.8.8
conda activate elasticbert
conda install pytorch==1.8.1 cudatoolkit=11.1 -c pytorch -c conda-forge
pip install -r requirements.txt

Pre-trained Models

We provide the pre-trained weights of ElasticBERT-BASE and ElasticBERT-LARGE, which can be directly used in Huggingface-Transformers.

  • ElasticBERT-BASE: 12 layers, 12 Heads and 768 Hidden Size.
  • ElasticBERT-LARGE: 24 layers, 16 Heads and 1024 Hidden Size.

The pre-trained weights can be downloaded here.

Model MODEL_NAME
ElasticBERT-BASE fnlp/elasticbert-base
ElasticBERT-LARGE fnlp/elasticbert-large

Downstream task datasets

The GLUE task datasets can be downloaded from the GLUE leaderboard

The ELUE task datasets can be downloaded from the ELUE leaderboard

Finetuning in static usage

We provide the finetuning code for both GLUE tasks and ELUE tasks in static usage on ElasticBERT.

For GLUE:

cd finetune-static
bash finetune_glue.sh

For ELUE:

cd finetune-static
bash finetune_elue.sh

Finetuning in dynamic usage

We provide finetuning code to apply two kind of early exiting methods on ElasticBERT.

For early exit using entropy criterion:

cd finetune-dynamic
bash finetune_elue_entropy.sh

For early exit using patience criterion:

cd finetune-dynamic
bash finetune_elue_patience.sh

Please see our paper for more details!

Contact

If you have any problems, raise an issue or contact Xiangyang Liu

Citation

If you find this repo helpful, we'd appreciate it a lot if you can cite the corresponding paper:

@article{liu2021elasticbert,
  author    = {Xiangyang Liu and
               Tianxiang Sun and
               Junliang He and
               Lingling Wu and
               Xinyu Zhang and
               Hao Jiang and
               Zhao Cao and
               Xuanjing Huang and
               Xipeng Qiu},
  title     = {Towards Efficient {NLP:} {A} Standard Evaluation and {A} Strong Baseline},
  journal   = {CoRR},
  volume    = {abs/2110.07038},
  year      = {2021},
  url       = {https://arxiv.org/abs/2110.07038},
  eprinttype = {arXiv},
  eprint    = {2110.07038},
  timestamp = {Fri, 22 Oct 2021 13:33:09 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2110-07038.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
Owner
fastNLP
由复旦大学的自然语言处理(NLP)团队发起的国产自然语言处理开源项目
fastNLP
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

CRF - Conditional Random Fields A library for dense conditional random fields (CRFs). This is the official accompanying code for the paper Regularized

Đ.Khuê Lê-Huu 21 Nov 26, 2022
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.

VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs » Report Bug · Request Feature Table of Contents About The Project Built

remsens-lim 2 Apr 28, 2022
ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

Double-zh 45 Dec 19, 2022
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 02, 2023
Official code for UnICORNN (ICML 2021)

UnICORNN (Undamped Independent Controlled Oscillatory RNN) [ICML 2021] This repository contains the implementation to reproduce the numerical experime

Konstantin Rusch 21 Dec 22, 2022
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?

Adversrial Machine Learning Benchmarks This code belongs to the papers: Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness? Det

Adversarial Machine Learning 9 Nov 27, 2022
[CVPR'22] COAP: Learning Compositional Occupancy of People

COAP: Compositional Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2022 paper COAP: Lear

Marko Mihajlovic 111 Dec 11, 2022
Title: Graduate-Admissions-Predictor

The purpose of this project is create a predictive model capable of identifying the probability of a person securing an admit based on their personal profile parameters. Simplified visualisations hav

Akarsh Singh 1 Jan 26, 2022
Measures input lag without dedicated hardware, performing motion detection on recorded or live video

What is InputLagTimer? This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam

Bruno Gonzalez 4 Aug 18, 2022
A library that allows for inference on probabilistic models

Bean Machine Overview Bean Machine is a probabilistic programming language for inference over statistical models written in the Python language using

Meta Research 234 Dec 29, 2022
LSTM-VAE Implementation and Relevant Evaluations

LSTM-VAE Implementation and Relevant Evaluations Before using any file in this repository, please create two directories under the root directory name

Lan Zhang 5 Oct 08, 2022
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
This is the implementation of GGHL (A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection)

GGHL: A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection This is the implementation of GGHL 👋 👋 👋 [Arxiv] [Google Drive][B

551 Dec 31, 2022
PyTorch deep learning projects made easy.

PyTorch Template Project PyTorch deep learning project made easy. PyTorch Template Project Requirements Features Folder Structure Usage Config file fo

Victor Huang 3.8k Jan 01, 2023
PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

PyGRANSO PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation Please check https://ncvx.org/PyGRANSO for detailed instructions (introd

SUN Group @ UMN 26 Nov 16, 2022
Sample code and notebooks for Vertex AI, the end-to-end machine learning platform on Google Cloud

Google Cloud Vertex AI Samples Welcome to the Google Cloud Vertex AI sample repository. Overview The repository contains notebooks and community conte

Google Cloud Platform 560 Dec 31, 2022