[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Overview

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Announcement ๐Ÿ”ฅ

We have not tested the code yet. We will finish this project by April.

Introduction

This repo contains PyTorch implementation for paper Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement (CVPR2022)

overview

@inproceedings{xu2022br,
author = {Xu, Xiuwei and Wang, Yifan and Zheng, Yu and Rao, Yongming and Lu, Jiwen and Zhou, Jie},
title = {Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2022}
}

Other papers related to 3D object detection with synthetic shape:

  • RandomRooms: Unsupervised Pre-training from Synthetic Shapes and Randomized Layouts for 3D Object Detection (ICCV 2021)

New dataset ๐Ÿ’ฅ

We conduct additional experiment on the more challenging Matterport3D dataset. From ModelNet40 and Matterport3D, we select all 13 shared categories, each containing more than 80 object instances in Matterport3D training set, to construct our benchmark (Matterport3d-md40). Below is the performance of FSB, WSB and BR (point-version) based on Votenet: overview

Note that we use OpenCV to estimate the rotated bounding boxes (RBB) as ground-truth, instead of the axis-aligned bounding boxes used in ScanNet-md40 benchmark.

ScanNet-md40 and Matterport3d-md40 are two more challenging benckmarks for indoor 3D object detection. We hope they will promote future research on small object detection and synthetic-to-real scene understanding.

Dependencies

We evaluate this code with Pytorch 1.8.1 (cuda11), which is based on the official implementation of Votenet and GroupFree3D. Please follow the requirements of them to prepare the environment. Other packages can be installed using:

pip install open3d sklearn tqdm

Current code base is tested under following environment:

  1. Python 3.6.13
  2. PyTorch 1.8.1
  3. numpy 1.19.2
  4. open3d 0.12.0
  5. opencv-python 4.5.1.48
  6. plyfile 0.7.3
  7. scikit-learn 0.24.1

Data preparation

ScanNet

To start from the raw data, you should:

  • Follow the README under GroupFree3D/scannet or Votenet/scannet to generate the real scenes.
  • Follow the README under ./data_generation/ScanNet to generate the virtual scenes.

The processed data can also be downloaded from here. They should be placed to paths:

./detection/Votenet/scannet/
./detection/GroupFree3D/scannet/

After that, the file directory should be like:

...
โ””โ”€โ”€ Votenet (or GroupFree3D)
    โ”œโ”€โ”€ ...
    โ””โ”€โ”€ scannet
        โ”œโ”€โ”€ ...
        โ”œโ”€โ”€ scannet_train_detection_data_md40
        โ”œโ”€โ”€ scannet_train_detection_data_md40_obj_aug
        โ””โ”€โ”€ scannet_train_detection_data_md40_obj_mesh_aug

Matterport3D

To start from the raw data, you should:

  • Follow the README under Votenet/scannet to generate the real scenes.
  • Follow the README under ./data_generation/Matterport3D to generate the virtual scenes.

The processed data can also be downloaded from here.

The file directory should be like:

...
โ””โ”€โ”€ Votenet
    โ”œโ”€โ”€ ...
    โ””โ”€โ”€ matterport
        โ”œโ”€โ”€ ...
        โ”œโ”€โ”€ matterport_train_detection_data_md40
        โ”œโ”€โ”€ matterport_train_detection_data_md40_obj_aug
        โ””โ”€โ”€ matterport_train_detection_data_md40_obj_mesh_aug

Usage

Please follow the instructions below to train different models on ScanNet. Change --dataset scannet to --dataset matterport for training on Matterport3D.

Votenet

1. Fully-Supervised Baseline

To train the Fully-Supervised Baseline (FSB) on Scannet data:

# Recommended GPU num: 1

cd Votenet

CUDA_VISIBLE_DEVICES=0 python train_Votenet_FSB.py --dataset scannet --log_dir log_Votenet_FSB --num_point 40000

2. Weakly-Supervised Baseline

To train the Weakly-Supervised Baseline (WSB) on Scannet data:

# Recommended num of GPUs: 1

CUDA_VISIBLE_DEVICES=0 python train_Votenet_WSB.py --dataset scannet --log_dir log_Votenet_WSB --num_point 40000

3. Back To Reality

To train BR (mesh-version) on Scannet data, please run:

# Recommended num of GPUs: 2

CUDA_VISIBLE_DEVICES=0,1 python train_Votenet_BR.py --dataset scannet --log_dir log_Votenet_BRM --num_point 40000

CUDA_VISIBLE_DEVICES=0,1 python train_Votenet_BR_CenterRefine --dataset scannet --log_dir log_Votenet_BRM_Refine --num_point 40000 --checkpoint_path log_Votenet_BRM/train_BR.tar

To train BR (point-version) on Scannet data, please run:

# Recommended num of GPUs: 2

CUDA_VISIBLE_DEVICES=0,1 python train_Votenet_BR.py --dataset scannet --log_dir log_Votenet_BRP --num_point 40000 --dataset_without_mesh

CUDA_VISIBLE_DEVICES=0,1 python train_Votenet_BR_CenterRefine --dataset scannet --log_dir log_Votenet_BRP_Refine --num_point 40000 --checkpoint_path log_Votenet_BRP/train_BR.tar --dataset_without_mesh

GroupFree3D

1. Fully-Supervised Baseline

To train the Fully-Supervised Baseline (FSB) on Scannet data:

# Recommended num of GPUs: 4

cd GroupFree3D

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> train_GF_FSB.py --num_point 50000 --num_decoder_layers 6 --size_delta 0.111111111111 --center_delta 0.04 --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 --dataset scannet --log_dir log_GF_FSB --batch_size 4

2. Weakly-Supervised Baseline

To train the Weakly-Supervised Baseline (WSB) on Scannet data:

# Recommended num of GPUs: 4

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> train_GF_WSB.py --num_point 50000 --num_decoder_layers 6 --size_delta 0.111111111111 --center_delta 0.04 --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 --dataset scannet --log_dir log_GF_WSB --batch_size 4

3. Back To Reality

To train BR (mesh-version) on Scannet data, please run:

# Recommended num of GPUs: 4

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> train_GF_BR.py --num_point 50000 --num_decoder_layers 6 --size_delta 0.111111111111 --center_delta 0.04 --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 --dataset scannet --log_dir log_GF_BRM --batch_size 4

# Recommended num of GPUs: 6

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> train_GF_BR_CenterRefine.py --num_point 50000 --num_decoder_layers 6 --size_delta 0.111111111111 --center_delta 0.04 --learning_rate 0.001 --decoder_learning_rate 0.0006 --weight_decay 0.0005 --dataset scannet --log_dir log_GF_BRM_Refine --checkpoint_path <[checkpoint_path_of_groupfree3D]/ckpt_epoch_last.pth> --max_epoch 120 --val_freq 10 --save_freq 20 --batch_size 2

To train BR (point-version) on Scannet data, please run:

# Recommended num of GPUs: 4

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> train_GF_BR.py --num_point 50000 --num_decoder_layers 6 --size_delta 0.111111111111 --center_delta 0.04 --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 --dataset scannet --log_dir log_GF_BRP --batch_size 4 --dataset_without_mesh

# Recommended num of GPUs: 6

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> train_GF_BR_CenterRefine.py --num_point 50000 --num_decoder_layers 6 --size_delta 0.111111111111 --center_delta 0.04 --learning_rate 0.001 --decoder_learning_rate 0.0006 --weight_decay 0.0005 --dataset scannet --log_dir log_GF_BRP_Refine --checkpoint_path <[checkpoint_path_of_groupfree3D]/ckpt_epoch_last.pth> --max_epoch 120 --val_freq 10 --save_freq 20 --batch_size 2 --dataset_without_mesh

TODO list

We will add the following to this repo:

  • Virtual scene generation for Matterport3D
  • Data and code for training Votenet (both baseline and BR) on the Matterport3D dataset

Acknowledgements

We thank a lot for the flexible codebase of Votenet and GroupFree3D.

Owner
Xiuwei Xu
3D vision, data/computation-efficient learning
Xiuwei Xu
Hyperparameter tuning for humans

KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c

Keras 2.6k Dec 27, 2022
Kaggle Ultrasound Nerve Segmentation competition [Keras]

Ultrasound nerve segmentation using Keras (1.0.7) Kaggle Ultrasound Nerve Segmentation competition [Keras] #Install (Ubuntu {14,16}, GPU) cuDNN requir

179 Dec 28, 2022
End-To-End Optimization of LiDAR Beam Configuration

End-To-End Optimization of LiDAR Beam Configuration arXiv | IEEE Xplore This repository is the official implementation of the paper: End-To-End Optimi

Niclas 30 Nov 28, 2022
NumQMBasic - A mini-course offered to Undergrad physics students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 35 Dec 05, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction ๐Ÿฅผ Predicts the likelihood of Polycystic Ovary Syndrome based on

Samantha Van Seters 1 Jan 10, 2022
Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022
Combining Reinforcement Learning and Constraint Programming for Combinatorial Optimization

Hybrid solving process for combinatorial optimization problems Combinatorial optimization has found applications in numerous fields, from aerospace to

117 Dec 13, 2022
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

้ƒญ้ฃž 3.7k Jan 03, 2023
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go This repository provides our implementation of the CVPR 2021 paper NeuroMorp

Meta Research 35 Dec 08, 2022
Some methods for comparing network representations in deep learning and neuroscience.

Generalized Shape Metrics on Neural Representations In neuroscience and in deep learning, quantifying the (dis)similarity of neural representations ac

Alex Williams 45 Dec 27, 2022
Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"

Hold me tight! Influence of discriminative features on deep network boundaries This is the source code to reproduce the experiments of the NeurIPS 202

EPFL LTS4 19 Dec 10, 2021
Cross View SLAM

Cross View SLAM This is the associated code and dataset repository for our paper I. D. Miller et al., "Any Way You Look at It: Semantic Crossview Loca

Ian D. Miller 99 Dec 09, 2022
Comp445 project - Data Communications & Computer Networks

COMP-445 Data Communications & Computer Networks Change Python version in Conda

Peng Zhao 2 Oct 03, 2022
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI ๐ŸŽ‰ YOLOv5็ฎ—ๆณ•(ver.6ๅŠver.5)็š„Qt-GUIๅฎž็Žฐ ๐ŸŽ‰ Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). ๅŸบไบŽYOLOv5็š„v5็‰ˆๆœฌๅ’Œv6็‰ˆๆœฌๅŠJavacrๅคงไฝฌ็š„UI้€ป่พ‘่ฟ›่กŒ็ผ–ๅ†™

EricFang 12 Dec 28, 2022
Using CNN to mimic the driver based on training data from Torcs

Behavioural-Cloning-in-autonomous-driving Using CNN to mimic the driver based on training data from Torcs. Approach First, the data was collected from

Sudharshan 2 Jan 05, 2022
This is an official source code for implementation on Extensive Deep Temporal Point Process

Extensive Deep Temporal Point Process This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed o

Haitao Lin 8 Aug 15, 2022
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
Sound Event Detection with FilterAugment

Sound Event Detection with FilterAugment Official implementation of Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Chal

43 Aug 28, 2022
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022