[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Overview

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Announcement 🔥

We have not tested the code yet. We will finish this project by April.

Introduction

This repo contains PyTorch implementation for paper Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement (CVPR2022)

overview

@inproceedings{xu2022br,
author = {Xu, Xiuwei and Wang, Yifan and Zheng, Yu and Rao, Yongming and Lu, Jiwen and Zhou, Jie},
title = {Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2022}
}

Other papers related to 3D object detection with synthetic shape:

  • RandomRooms: Unsupervised Pre-training from Synthetic Shapes and Randomized Layouts for 3D Object Detection (ICCV 2021)

New dataset 💥

We conduct additional experiment on the more challenging Matterport3D dataset. From ModelNet40 and Matterport3D, we select all 13 shared categories, each containing more than 80 object instances in Matterport3D training set, to construct our benchmark (Matterport3d-md40). Below is the performance of FSB, WSB and BR (point-version) based on Votenet: overview

Note that we use OpenCV to estimate the rotated bounding boxes (RBB) as ground-truth, instead of the axis-aligned bounding boxes used in ScanNet-md40 benchmark.

ScanNet-md40 and Matterport3d-md40 are two more challenging benckmarks for indoor 3D object detection. We hope they will promote future research on small object detection and synthetic-to-real scene understanding.

Dependencies

We evaluate this code with Pytorch 1.8.1 (cuda11), which is based on the official implementation of Votenet and GroupFree3D. Please follow the requirements of them to prepare the environment. Other packages can be installed using:

pip install open3d sklearn tqdm

Current code base is tested under following environment:

  1. Python 3.6.13
  2. PyTorch 1.8.1
  3. numpy 1.19.2
  4. open3d 0.12.0
  5. opencv-python 4.5.1.48
  6. plyfile 0.7.3
  7. scikit-learn 0.24.1

Data preparation

ScanNet

To start from the raw data, you should:

  • Follow the README under GroupFree3D/scannet or Votenet/scannet to generate the real scenes.
  • Follow the README under ./data_generation/ScanNet to generate the virtual scenes.

The processed data can also be downloaded from here. They should be placed to paths:

./detection/Votenet/scannet/
./detection/GroupFree3D/scannet/

After that, the file directory should be like:

...
└── Votenet (or GroupFree3D)
    ├── ...
    └── scannet
        ├── ...
        ├── scannet_train_detection_data_md40
        ├── scannet_train_detection_data_md40_obj_aug
        └── scannet_train_detection_data_md40_obj_mesh_aug

Matterport3D

To start from the raw data, you should:

  • Follow the README under Votenet/scannet to generate the real scenes.
  • Follow the README under ./data_generation/Matterport3D to generate the virtual scenes.

The processed data can also be downloaded from here.

The file directory should be like:

...
└── Votenet
    ├── ...
    └── matterport
        ├── ...
        ├── matterport_train_detection_data_md40
        ├── matterport_train_detection_data_md40_obj_aug
        └── matterport_train_detection_data_md40_obj_mesh_aug

Usage

Please follow the instructions below to train different models on ScanNet. Change --dataset scannet to --dataset matterport for training on Matterport3D.

Votenet

1. Fully-Supervised Baseline

To train the Fully-Supervised Baseline (FSB) on Scannet data:

# Recommended GPU num: 1

cd Votenet

CUDA_VISIBLE_DEVICES=0 python train_Votenet_FSB.py --dataset scannet --log_dir log_Votenet_FSB --num_point 40000

2. Weakly-Supervised Baseline

To train the Weakly-Supervised Baseline (WSB) on Scannet data:

# Recommended num of GPUs: 1

CUDA_VISIBLE_DEVICES=0 python train_Votenet_WSB.py --dataset scannet --log_dir log_Votenet_WSB --num_point 40000

3. Back To Reality

To train BR (mesh-version) on Scannet data, please run:

# Recommended num of GPUs: 2

CUDA_VISIBLE_DEVICES=0,1 python train_Votenet_BR.py --dataset scannet --log_dir log_Votenet_BRM --num_point 40000

CUDA_VISIBLE_DEVICES=0,1 python train_Votenet_BR_CenterRefine --dataset scannet --log_dir log_Votenet_BRM_Refine --num_point 40000 --checkpoint_path log_Votenet_BRM/train_BR.tar

To train BR (point-version) on Scannet data, please run:

# Recommended num of GPUs: 2

CUDA_VISIBLE_DEVICES=0,1 python train_Votenet_BR.py --dataset scannet --log_dir log_Votenet_BRP --num_point 40000 --dataset_without_mesh

CUDA_VISIBLE_DEVICES=0,1 python train_Votenet_BR_CenterRefine --dataset scannet --log_dir log_Votenet_BRP_Refine --num_point 40000 --checkpoint_path log_Votenet_BRP/train_BR.tar --dataset_without_mesh

GroupFree3D

1. Fully-Supervised Baseline

To train the Fully-Supervised Baseline (FSB) on Scannet data:

# Recommended num of GPUs: 4

cd GroupFree3D

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> train_GF_FSB.py --num_point 50000 --num_decoder_layers 6 --size_delta 0.111111111111 --center_delta 0.04 --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 --dataset scannet --log_dir log_GF_FSB --batch_size 4

2. Weakly-Supervised Baseline

To train the Weakly-Supervised Baseline (WSB) on Scannet data:

# Recommended num of GPUs: 4

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> train_GF_WSB.py --num_point 50000 --num_decoder_layers 6 --size_delta 0.111111111111 --center_delta 0.04 --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 --dataset scannet --log_dir log_GF_WSB --batch_size 4

3. Back To Reality

To train BR (mesh-version) on Scannet data, please run:

# Recommended num of GPUs: 4

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> train_GF_BR.py --num_point 50000 --num_decoder_layers 6 --size_delta 0.111111111111 --center_delta 0.04 --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 --dataset scannet --log_dir log_GF_BRM --batch_size 4

# Recommended num of GPUs: 6

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> train_GF_BR_CenterRefine.py --num_point 50000 --num_decoder_layers 6 --size_delta 0.111111111111 --center_delta 0.04 --learning_rate 0.001 --decoder_learning_rate 0.0006 --weight_decay 0.0005 --dataset scannet --log_dir log_GF_BRM_Refine --checkpoint_path <[checkpoint_path_of_groupfree3D]/ckpt_epoch_last.pth> --max_epoch 120 --val_freq 10 --save_freq 20 --batch_size 2

To train BR (point-version) on Scannet data, please run:

# Recommended num of GPUs: 4

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> train_GF_BR.py --num_point 50000 --num_decoder_layers 6 --size_delta 0.111111111111 --center_delta 0.04 --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 --dataset scannet --log_dir log_GF_BRP --batch_size 4 --dataset_without_mesh

# Recommended num of GPUs: 6

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> train_GF_BR_CenterRefine.py --num_point 50000 --num_decoder_layers 6 --size_delta 0.111111111111 --center_delta 0.04 --learning_rate 0.001 --decoder_learning_rate 0.0006 --weight_decay 0.0005 --dataset scannet --log_dir log_GF_BRP_Refine --checkpoint_path <[checkpoint_path_of_groupfree3D]/ckpt_epoch_last.pth> --max_epoch 120 --val_freq 10 --save_freq 20 --batch_size 2 --dataset_without_mesh

TODO list

We will add the following to this repo:

  • Virtual scene generation for Matterport3D
  • Data and code for training Votenet (both baseline and BR) on the Matterport3D dataset

Acknowledgements

We thank a lot for the flexible codebase of Votenet and GroupFree3D.

Owner
Xiuwei Xu
3D vision, data/computation-efficient learning
Xiuwei Xu
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
Scene-Text-Detection-and-Recognition (Pytorch)

Scene-Text-Detection-and-Recognition (Pytorch) Competition URL: https://tbrain.t

Gi-Luen Huang 9 Jan 02, 2023
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
Anime Face Detector using mmdet and mmpose

Anime Face Detector This is an anime face detector using mmdetection and mmpose. (To avoid copyright issues, I use generated images by the TADNE model

198 Jan 07, 2023
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
Enhancing Knowledge Tracing via Adversarial Training

Enhancing Knowledge Tracing via Adversarial Training This repository contains source code for the paper "Enhancing Knowledge Tracing via Adversarial T

Xiaopeng Guo 14 Oct 24, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Trans

Zhuang AI Group 105 Dec 06, 2022
BuildingNet: Learning to Label 3D Buildings

BuildingNet This is the implementation of the BuildingNet architecture described in this paper: Paper: BuildingNet: Learning to Label 3D Buildings Arx

16 Nov 07, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

79 Jan 06, 2023
Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

Kai Ninomiya 5 Jul 18, 2022
Traditional deepdream with VQGAN+CLIP and optical flow. Ready to use in Google Colab

VQGAN-CLIP-Video cat.mp4 policeman.mp4 schoolboy.mp4 forsenBOG.mp4

23 Oct 26, 2022
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo Block diagram of FCL-taco2, where the decode

Disong Wang 39 Sep 28, 2022
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
Byzantine-robust decentralized learning via self-centered clipping

Byzantine-robust decentralized learning via self-centered clipping In this paper, we study the challenging task of Byzantine-robust decentralized trai

EPFL Machine Learning and Optimization Laboratory 4 Aug 27, 2022