Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Overview

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV)

Title

FLAME (Fire Luminosity Airborne-based Machine learning Evaluation) Dataset
Alt Text

Paper

You can find the article related to this code here at Elsevier or
You can find the preprint from the Arxiv website.

Dataset

  • The dataset is uploaded on IEEE dataport. You can find the dataset here at IEEE Dataport or DOI. IEEE account is free, so you can create an account and access the dataset files without any payment or subscription.

  • This table below shows all available data for the dataset.

  • This project uses items 7, 8, 9, and 10 from the dataset. Items 7 and 8 are being used for the "Fire_vs_NoFire" image classification. Items 9 and 10 are for the fire segmentation.

  • If you clone this repository on your local drive, please download item 7 from the dataset and unzip in directory /frames/Training/... for the Training phase of the "Fire_vs_NoFire" image classification. The direcotry looks like this:

Repository/frames/Training
                    ├── Fire/*.jpg
                    ├── No_Fire/*.jpg
  • For testing your trained model, please use item 8 and unzip it in direcotry /frame/Test/... . The direcotry looks like this:
Repository/frames/Test
                    ├── Fire/*.jpg
                    ├── No_Fire/*.jpg
  • Items 9 and 10 should be unzipped in these directories frames/Segmentation/Data/Image/... and frames/Segmentation/Data/Masks/... accordingly. The direcotry looks like this:
Repository/frames/Segmentation/Data
                                ├── Images/*.jpg
                                ├── Masks/*.png
  • Please remove other README files from those directories and make sure that only images are there.

Model

  • The binary fire classifcation model of this project is based on the Xception Network:

Alt text

  • The fire segmentation model of this project is based on the U-NET:

Alt text

Sample

  • A short sample video of the dataset is available on YouTube: Alt text

Requirements

  • os
  • re
  • cv2
  • copy
  • tqdm
  • scipy
  • pickle
  • numpy
  • random
  • itertools
  • Keras 2.4.0
  • scikit-image
  • Tensorflow 2.3.0
  • matplotlib.pyplot

Code

This code is run and tested on Python 3.6 on linux (Ubuntu 18.04) machine with no issues. There is a config.py file in this directoy which shows all the configuration parameters such as Mode, image target size, Epochs, batch size, train_validation ratio, etc. All dependency files are available in the root directory of this repository.

  • To run the training phase for the "Fire_vs_NoFire" image classification, change the mode value to 'Training' in the config.py file. Like This
Mode = 'Training'

Make sure that you have copied and unzipped the data in correct direcotry.

  • To run the test phase for the "Fire_vs_NoFire" image classification, change the mode value to 'Classification' in the config.py file. Change This
Mode = 'Classification'

Make sure that you have copied and unzipped the data in correct direcotry.

  • To run the test phase for the Fire segmentation, change the mode value to 'Classification' in the config.py file. Change This
Mode = 'Segmentation'

Make sure that you have copied and unzipped the data in correct direcotry.

Then after setting your parameters, just run the main.py file.

python main.py

Results

  • Fire classification accuracy:

Alt text

  • Fire classification Confusion Matrix:

  • Fire segmentation metrics and evaluation:

Alt text

  • Comparison between generated masks and grount truth mask:

Alt text

  • Federated Learning sample
    To consider future challenges, we defined a new sample of federated learning on a local node (NVidia Jetson Nano, 4GB RAM). Jetson Nano is available in two versions: 1) 4GB RAM developer kit, and 2) 2GB RAM developer kit. In this Implementation, the 4GB version is used with the technical specifications of a 128-core Maxwell GPU, a Quad-core ARM A57 @ 1.43 GHz CPU, 4GB LPDDR4 RAM, and a 32GB microSD storage. To test Jetson Nano for the federated learning, items (9) and (10) from Dataset are used for the fire segmentation. Since Jetson Nano has limited RAM, we assumed that each drone has access to a portion of the FLAME dataset. Only 500 fire images and masks are considered for the training and validation phase on the drone. As we aimed at learning a model on a smaller subset of the FLAME dataset and inferring that model, the default Tensorflow version is used here. Also, the image and mask dimension for each input is reduced to 128 x 128 x 3 rather than 512 x 512 x 3. To save more memory on the RAM, all peripherals were turned off and only WiFi was working at that time for the Secure Shell (SSH) connection. The setup of this node is:

Citation

If you find it useful, please cite our paper as follows:

@article{shamsoshoara2021aerial,
  title={Aerial Imagery Pile burn detection using Deep Learning: the FLAME dataset},
  author={Shamsoshoara, Alireza and Afghah, Fatemeh and Razi, Abolfazl and Zheng, Liming and Ful{\'e}, Peter Z and Blasch, Erik},
  journal={Computer Networks},
  pages={108001},
  year={2021},
  publisher={Elsevier}
}

Other related repositories and articles

License

For academtic and non-commercial usage

Owner
Ph.D. in Informatics and Computing from Northern Arizona University, M.Sc. in Informatics, M.Sc, in Electrical Engineering, B.Sc. in Electrical Engineering
Read number plates with https://platerecognizer.com/

HASS-plate-recognizer Read vehicle license plates with https://platerecognizer.com/ which offers free processing of 2500 images per month. You will ne

Robin 69 Dec 30, 2022
Solution to the Weather4cast 2021 challenge

This code was used for the entry by the team "antfugue" for the Weather4cast 2021 Challenge. Below, you can find the instructions for generating predi

Jussi Leinonen 13 Jan 03, 2023
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
A very impractical 3D rendering engine that runs in the python terminal.

Terminal-3D-Render A very impractical 3D rendering engine that runs in the python terminal. do NOT try to run this program using the standard python I

23 Dec 31, 2022
Replication of Pix2Seq with Pretrained Model

Pretrained-Pix2Seq We provide the pre-trained model of Pix2Seq. This version contains new data augmentation. The model is trained for 300 epochs and c

peng gao 51 Nov 22, 2022
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

Phil Wang 146 Dec 06, 2022
Complete-IoU (CIoU) Loss and Cluster-NMS for Object Detection and Instance Segmentation (YOLACT)

Complete-IoU Loss and Cluster-NMS for Improving Object Detection and Instance Segmentation. Our paper is accepted by IEEE Transactions on Cybernetics

290 Dec 25, 2022
SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems

The SLIDE package contains the source code for reproducing the main experiments in this paper. Dataset The Datasets can be downloaded in Amazon-

Intel Labs 72 Dec 16, 2022
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022
Training Cifar-10 Classifier Using VGG16

opevcvdl-hw3 This project uses pytorch and Qt to achieve the requirements. Version Python 3.6 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.

Kenny Cheng 3 Aug 17, 2022
Author's PyTorch implementation of TD3 for OpenAI gym tasks

Addressing Function Approximation Error in Actor-Critic Methods PyTorch implementation of Twin Delayed Deep Deterministic Policy Gradients (TD3). If y

Scott Fujimoto 1.3k Dec 25, 2022
Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Eleftheriadis Emmanouil 1 Oct 09, 2021
This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.

ASL-Skeleton3D and ASL-Phono Datasets Generator The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coo

Cleison Amorim 5 Nov 20, 2022
Json2Xml tool will help you convert from json COCO format to VOC xml format in Object Detection Problem.

JSON 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Json2Xml t

Nguyễn Trường Lâu 6 Aug 22, 2022
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
Lightweight plotting to the terminal. 4x resolution via Unicode.

Uniplot Lightweight plotting to the terminal. 4x resolution via Unicode. When working with production data science code it can be handy to have plotti

Olav Stetter 203 Dec 29, 2022
The Generic Manipulation Driver Package - Implements a ROS Interface over the robotics toolbox for Python

Armer Driver Armer aims to provide an interface layer between the hardware drivers of a robotic arm giving the user control in several ways: Joint vel

QUT Centre for Robotics (QCR) 13 Nov 26, 2022
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

万理 5 Jul 26, 2022
Instance-wise Feature Importance in Time (FIT)

Instance-wise Feature Importance in Time (FIT) FIT is a framework for explaining time series perdiction models, by assigning feature importance to eve

Sana 46 Dec 25, 2022