PyTorch implementation of paper "MT-ORL: Multi-Task Occlusion Relationship Learning" (ICCV 2021)

Related tags

HardwareMT-ORL
Overview

MT-ORL: Multi-Task Occlusion Relationship Learning

Official implementation of paper "MT-ORL: Multi-Task Occlusion Relationship Learning" (ICCV 2021)


Paper: [ICCV2021], [arXiv]

Author: Panhe Feng1,2, Qi She2, Lei Zhu1, Jiaxin Li2, Lin ZHANG2, Zijian Feng2, Changhu Wang2, Chunpeng Li1, Xuejing Kang1, Anlong Ming1

1Beijing University of Posts and Telecommunications, 2ByteDance Inc.

Introduction

Retrieving occlusion relation among objects in a single image is challenging due to sparsity of boundaries in image. We observe two key issues in existing works: firstly, lack of an architecture which can exploit the limited amount of coupling in the decoder stage between the two subtasks, namely occlusion boundary extraction and occlusion orientation prediction, and secondly, improper representation of occlusion orientation. In this paper, we propose a novel architecture called Occlusion-shared and Path-separated Network (OPNet), which solves the first issue by exploiting rich occlusion cues in shared high-level features and structured spatial information in task-specific low-level features. We then design a simple but effective orthogonal occlusion representation (OOR) to tackle the second issue. Our method surpasses the state-of-the-art methods by 6.1%/8.3% Boundary-AP and 6.5%/10% Orientation-AP on standard PIOD/BSDS ownership datasets.

Citation

If you find our work helpful to your research, please cite our paper:

@InProceedings{Feng_2021_ICCV,
    author    = {Feng, Panhe and She, Qi and Zhu, Lei and Li, Jiaxin and Zhang, Lin and Feng, Zijian and Wang, Changhu and Li, Chunpeng and Kang, Xuejing and Ming, Anlong},
    title     = {MT-ORL: Multi-Task Occlusion Relationship Learning},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {9364-9373}
}

Environmental Setup

Quick start full script:

conda create -n mtorl python=3.7 -y
conda activate mtorl
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=11.1 -c pytorch -c conda-forge
conda install imageio h5py

# clone code
git clone https://github.com/fengpanhe/MT-ORL
cd MT-ORL

Data Preparation

You can download two datasets we have processed from here (PIOD.zip and BSDSownership.zip), or follow the documentation of the DOOBNet to prepare two datasets.

Unzip PIOD.zip and BSDSownership.zip to ./data/, the file structure is as followed:

data
├── BSDSownership
│   ├── Augmentation
│   ├── BSDS300
│   ├── testfg
│   ├── test.lst
│   ├── trainfg
│   └── train.lst
├── PIOD
│   ├── Aug_JPEGImages
│   ├── Aug_PngEdgeLabel
│   ├── Aug_PngOriLabel
│   ├── Data
│   ├── test_ids.lst
│   ├── train_ids.lst
│   └── val_doc_2010.txt

Training

Download the Res50 weight file resnet50s-a75c83cf.zip form PyTorch-Encoding, and unzip to ./data/

PASCAL Instance Occlusion Dataset (PIOD)

For training OPNet on PIOD dataset, you can run:

python3 main.py --cuda --amp --epoch 20  --base_lr 0.00003 \
    --dataset piod --dataset_dir data/PIOD \
    --bankbone_pretrain data/resnet50s-a75c83cf.pth \
    --save_dir result/piod_saved

BSDS ownership

For training OPNet on BSDS ownership, you can run:

python3 main.py --cuda --amp --epoch 20 --boundary_lambda 1.1 \
    --dataset bsdsown --dataset_dir data/BSDSownership \
    --base_lr 0.0003 --module_name_scale "{'backbone': 0.1}" \
    --bankbone_pretrain data/resnet50s-a75c83cf.pth \
    --save_dir result/bsdsown_saved

Evaluation

Here we provide the PIOD and the BSDS ownership dataset's evaluation and visualization code in tools/doobscripts folder (this code is modified from DOOBNet/doobscripts).

Matlab is required for evaluation. We have a python script (tools/evaluate/evaluate_occ.py) that calls the matlab evaluation program. you can follow Calling MATLAB from Python to configure matlab for python.

To evaluate PIOD, you can run:

# Evaluate multiple
python tools/evaluate/evaluate_occ.py --dataset PIOD --occ 1 --epochs "5:20:2" --zip-dir result/piod_saved/test_result

# Evaluate one
python tools/evaluate/evaluate_occ.py --dataset PIOD --occ 1 --zipfile result/piod_saved/test_result/epoch_19_test_result.tar

To evaluate BSDSownership, you can run:

# Evaluate multiple
python tools/evaluate/evaluate_occ.py  --dataset BSDSownership --occ 1 --epochs "5:20:2" --zip-dir result/bsdsown_saved/test_result

# Evaluate one
python tools/evaluate/evaluate_occ.py --dataset BSDSownership --occ 1 --zipfile result/bsdsown_saved/test_result/epoch_19_test_result.tar

Trained Models

Here we obtain better performance than those reported in the paper.

Dataset B-ODS B-OIS B-AP O-ODS O-OIS O-AP model test result
PIOD 80.0 80.5 84.3 77.5 77.9 80.8 PIOD_model.pth PIOD_test.tar
BSDS ownership 68.3 71.4 69.0 62.2 65.0 60.9 BSDSown_model.pth BSDSown_test.tar

Acknowledgement

The evaluation code tools/doobscripts is based on DOOBNet/doobscripts. Thanks to the contributors of DOOBNet.

We use the ResNet50 with pretrained from PyTorch-Encoding. Thanks to the contributors of PyTorch-Encoding.

Owner
Panhe Feng
Panhe Feng
A custom mechanical keyboard inspired by the CFTKB Mysterium

Env-KB A custom mechanical keyboard inspired by the CFTKB Mysterium Build Guide and Parts List What is to do? Right now for the first 5 PCBs I have, i

EnviousData 203 Jan 04, 2023
BoneIO is a compact IO controller for home automation.

Project description BoneIO is a compact IO controller for home automation. Main features of this controller are Compact size (27x11x6)cm - 15 DIN modu

Maciej Krasuski 120 Nov 30, 2022
Raspberry Pi Spectrometer

PySpectrometer 2021-03-05 Raspberry Pi Spectrometer The PySpectrometer is a Python (OpenCV and Tkinter) implementation of an optical spectrometer. The

Les Wright 538 Jan 05, 2023
The robot is an autonomous small scale racing car using NVIDIA Jetson Nano.

The robot is an autonomous small scale racing car using NVIDIA Jetson Nano. This project utilizes deep learning neural network framework Keras/Tensorflow, together with computer vision library OpenCV

1 Dec 08, 2021
A script and GUI for controlling stepper motors from an arduino

A script and GUI for controlling stepper motors from an arduino (nema 23 in my case but should work for others in general)

Pip 2 Aug 01, 2022
🌱 - WebhookHard◞ Fines Educativos ◟

v1.0.0 WebhookHardware ¿Que es WebhookHardware? WebhookHardware se trata de un proyecto tratado para sacar informacion sobre el hardware de tus victim

3 Jun 14, 2021
🔆 A Python module for controlling power and brightness of the official Raspberry Pi 7

rpi-backlight A Python module for controlling power and brightness of the official Raspberry Pi 7" touch display. Note: This GIF was created using the

Linus Groh 238 Jan 08, 2023
Pinion — Nice-looking interactive diagrams for KiCAD PCBs

Pinion — Nice-looking interactive diagrams for KiCAD PCBs Pinion is a simple tool that allows you to make a nice-looking pinout diagrams for your PCBs

Jan Mrázek 297 Jan 06, 2023
Hook and simulate global mouse events in pure Python

mouse Take full control of your mouse with this small Python library. Hook global events, register hotkeys, simulate mouse movement and clicks, and mu

BoppreH 722 Dec 31, 2022
Drobo Status is a python program that will connect to your Drobo and return JSON data regarding your Drobo

This is a simple python script that will run a docker container to pull data from Drobo. It will give information like (Name, serial, firmware, disk-total, disk-used, disk-free and individual disk st

Biofects 1 Jan 15, 2022
Mini Pupper - Open-Source,ROS Robot Dog Kit

Mini Pupper - Open-Source,ROS Robot Dog Kit

MangDang 747 Dec 28, 2022
A circle of LEDs

This repository contains all the design files, production files and example code for a simple circular LED display.

Pim de Groot 15 Aug 21, 2022
ESP32 micropython implementation of Art-Net client

E_uArtnet ESP32 micropython implementation of Art-Net client Instalation Use thonny Open the root folder in thonny and upload the Empire folder like i

2 Dec 07, 2021
Automatically draw a KiCad schematic for a circuit prototyped on a breadboard.

Schematic-o-matic Schematic-o-matic automatically draws a KiCad schematic for a circuit prototyped on a breadboard. How It Works The first step in the

Nick Bild 22 Oct 11, 2022
Brogrammer-keyboard - FIrmware for the Brogrammer Keyboard v1.0

Brogrammer Keyboard Firmware The package contains the firmware that runs on the Brogrammer Keyboard v1.0 See https://imgur.com/a/oY5QZ14 This keyboard

Devin Hartleben 1 Apr 21, 2022
Homeautomation system created with Raspberry Pi 3 and Firebase.

Homeautomation System - Raspberry Pi 3 Desenvolvido com Python, Flask com AJAX e Firebase permite o controle local e remoto Itens necessários Raspberr

Joselino Santos 0 Mar 09, 2022
Implemented robot inverse kinematics.

robot_inverse_kinematics Project setup # put the package in the workspace $ cd ~/catkin_ws/ $ catkin_make $ source devel/setup.bash Description In thi

Jianming Han 2 Dec 08, 2022
ArduinoWaterHeaterIOT - IoT Probe of a solar PV water heating system - Arduino, Python, MQTT, MySQL

ArduinoWaterHeaterIOT IoT Probe of a solar PV water heating system - Arduino, Raspberry Pi, Python, MQTT, MySQL The Arduino sends the AC and DC watts

Jacques Fourie 1 Jan 11, 2022
OPNsense integration with Home Assistant

hass-opnsense Join OPNsense with home-assistant! hass-opnsense uses the built-in xmlrpc service of OPNsense for all interactions. This project is curr

Travis Glenn Hansen 54 Jan 03, 2023
A Python program that makes it easy to manage modules on a CircuitPython device!

CircuitPython-Bundle-Manager-v2 A Python program that makes it easy to manage modules on a CircuitPython device! The CircuitPython Bundle Manager v2 i

Ckyiu 1 Dec 18, 2021