Python bindings and utilities for GeoJSON

Overview

geojson

GitHub Actions Codecov Jazzband

This Python library contains:

Table of Contents

Installation

geojson is compatible with Python 3.6, 3.7 and 3.8. The recommended way to install is via pip:

pip install geojson

GeoJSON Objects

This library implements all the GeoJSON Objects described in The GeoJSON Format Specification.

All object keys can also be used as attributes.

The objects contained in GeometryCollection and FeatureCollection can be indexed directly.

Point

>>> from geojson import Point

>>> Point((-115.81, 37.24))  # doctest: +ELLIPSIS
{"coordinates": [-115.8..., 37.2...], "type": "Point"}

Visualize the result of the example above here. General information about Point can be found in Section 3.1.2 and Appendix A: Points within The GeoJSON Format Specification.

MultiPoint

>>> from geojson import MultiPoint

>>> MultiPoint([(-155.52, 19.61), (-156.22, 20.74), (-157.97, 21.46)])  # doctest: +ELLIPSIS
{"coordinates": [[-155.5..., 19.6...], [-156.2..., 20.7...], [-157.9..., 21.4...]], "type": "MultiPoint"}

Visualize the result of the example above here. General information about MultiPoint can be found in Section 3.1.3 and Appendix A: MultiPoints within The GeoJSON Format Specification.

LineString

>>> from geojson import LineString

>>> LineString([(8.919, 44.4074), (8.923, 44.4075)])  # doctest: +ELLIPSIS
{"coordinates": [[8.91..., 44.407...], [8.92..., 44.407...]], "type": "LineString"}

Visualize the result of the example above here. General information about LineString can be found in Section 3.1.4 and Appendix A: LineStrings within The GeoJSON Format Specification.

MultiLineString

>>> from geojson import MultiLineString

>>> MultiLineString([
...     [(3.75, 9.25), (-130.95, 1.52)],
...     [(23.15, -34.25), (-1.35, -4.65), (3.45, 77.95)]
... ])  # doctest: +ELLIPSIS
{"coordinates": [[[3.7..., 9.2...], [-130.9..., 1.52...]], [[23.1..., -34.2...], [-1.3..., -4.6...], [3.4..., 77.9...]]], "type": "MultiLineString"}

Visualize the result of the example above here. General information about MultiLineString can be found in Section 3.1.5 and Appendix A: MultiLineStrings within The GeoJSON Format Specification.

Polygon

>>> from geojson import Polygon

>>> # no hole within polygon
>>> Polygon([[(2.38, 57.322), (23.194, -20.28), (-120.43, 19.15), (2.38, 57.322)]])  # doctest: +ELLIPSIS
{"coordinates": [[[2.3..., 57.32...], [23.19..., -20.2...], [-120.4..., 19.1...]]], "type": "Polygon"}

>>> # hole within polygon
>>> Polygon([
...     [(2.38, 57.322), (23.194, -20.28), (-120.43, 19.15), (2.38, 57.322)],
...     [(-5.21, 23.51), (15.21, -10.81), (-20.51, 1.51), (-5.21, 23.51)]
... ])  # doctest: +ELLIPSIS
{"coordinates": [[[2.3..., 57.32...], [23.19..., -20.2...], [-120.4..., 19.1...]], [[-5.2..., 23.5...], [15.2..., -10.8...], [-20.5..., 1.5...], [-5.2..., 23.5...]]], "type": "Polygon"}

Visualize the results of the example above here. General information about Polygon can be found in Section 3.1.6 and Appendix A: Polygons within The GeoJSON Format Specification.

MultiPolygon

>>> from geojson import MultiPolygon

>>> MultiPolygon([
...     ([(3.78, 9.28), (-130.91, 1.52), (35.12, 72.234), (3.78, 9.28)],),
...     ([(23.18, -34.29), (-1.31, -4.61), (3.41, 77.91), (23.18, -34.29)],)
... ])  # doctest: +ELLIPSIS
{"coordinates": [[[[3.7..., 9.2...], [-130.9..., 1.5...], [35.1..., 72.23...]]], [[[23.1..., -34.2...], [-1.3..., -4.6...], [3.4..., 77.9...]]]], "type": "MultiPolygon"}

Visualize the result of the example above here. General information about MultiPolygon can be found in Section 3.1.7 and Appendix A: MultiPolygons within The GeoJSON Format Specification.

GeometryCollection

>>> from geojson import GeometryCollection, Point, LineString

>>> my_point = Point((23.532, -63.12))

>>> my_line = LineString([(-152.62, 51.21), (5.21, 10.69)])

>>> geo_collection = GeometryCollection([my_point, my_line])

>>> geo_collection  # doctest: +ELLIPSIS
{"geometries": [{"coordinates": [23.53..., -63.1...], "type": "Point"}, {"coordinates": [[-152.6..., 51.2...], [5.2..., 10.6...]], "type": "LineString"}], "type": "GeometryCollection"}

>>> geo_collection[1]
{"coordinates": [[-152.62, 51.21], [5.21, 10.69]], "type": "LineString"}

>>> geo_collection[0] == geo_collection.geometries[0]
True

Visualize the result of the example above here. General information about GeometryCollection can be found in Section 3.1.8 and Appendix A: GeometryCollections within The GeoJSON Format Specification.

Feature

>>> from geojson import Feature, Point

>>> my_point = Point((-3.68, 40.41))

>>> Feature(geometry=my_point)  # doctest: +ELLIPSIS
{"geometry": {"coordinates": [-3.68..., 40.4...], "type": "Point"}, "properties": {}, "type": "Feature"}

>>> Feature(geometry=my_point, properties={"country": "Spain"})  # doctest: +ELLIPSIS
{"geometry": {"coordinates": [-3.68..., 40.4...], "type": "Point"}, "properties": {"country": "Spain"}, "type": "Feature"}

>>> Feature(geometry=my_point, id=27)  # doctest: +ELLIPSIS
{"geometry": {"coordinates": [-3.68..., 40.4...], "type": "Point"}, "id": 27, "properties": {}, "type": "Feature"}

Visualize the results of the examples above here. General information about Feature can be found in Section 3.2 within The GeoJSON Format Specification.

FeatureCollection

>>> from geojson import Feature, Point, FeatureCollection

>>> my_feature = Feature(geometry=Point((1.6432, -19.123)))

>>> my_other_feature = Feature(geometry=Point((-80.234, -22.532)))

>>> feature_collection = FeatureCollection([my_feature, my_other_feature])

>>> feature_collection # doctest: +ELLIPSIS
{"features": [{"geometry": {"coordinates": [1.643..., -19.12...], "type": "Point"}, "properties": {}, "type": "Feature"}, {"geometry": {"coordinates": [-80.23..., -22.53...], "type": "Point"}, "properties": {}, "type": "Feature"}], "type": "FeatureCollection"}

>>> feature_collection.errors()
[]

>>> (feature_collection[0] == feature_collection['features'][0], feature_collection[1] == my_other_feature)
(True, True)

Visualize the result of the example above here. General information about FeatureCollection can be found in Section 3.3 within The GeoJSON Format Specification.

GeoJSON encoding/decoding

All of the GeoJSON Objects implemented in this library can be encoded and decoded into raw GeoJSON with the geojson.dump, geojson.dumps, geojson.load, and geojson.loads functions. Note that each of these functions is a wrapper around the core json function with the same name, and will pass through any additional arguments. This allows you to control the JSON formatting or parsing behavior with the underlying core json functions.

>>> import geojson

>>> my_point = geojson.Point((43.24, -1.532))

>>> my_point  # doctest: +ELLIPSIS
{"coordinates": [43.2..., -1.53...], "type": "Point"}

>>> dump = geojson.dumps(my_point, sort_keys=True)

>>> dump  # doctest: +ELLIPSIS
'{"coordinates": [43.2..., -1.53...], "type": "Point"}'

>>> geojson.loads(dump)  # doctest: +ELLIPSIS
{"coordinates": [43.2..., -1.53...], "type": "Point"}

Custom classes

This encoding/decoding functionality shown in the previous can be extended to custom classes using the interface described by the __geo_interface__ Specification.

>>> import geojson

>>> class MyPoint():
...     def __init__(self, x, y):
...         self.x = x
...         self.y = y
...
...     @property
...     def __geo_interface__(self):
...         return {'type': 'Point', 'coordinates': (self.x, self.y)}

>>> point_instance = MyPoint(52.235, -19.234)

>>> geojson.dumps(point_instance, sort_keys=True)  # doctest: +ELLIPSIS
'{"coordinates": [52.23..., -19.23...], "type": "Point"}'

Default and custom precision

GeoJSON Object-based classes in this package have an additional precision attribute which rounds off coordinates to 6 decimal places (roughly 0.1 meters) by default and can be customized per object instance.

>>> from geojson import Point

>>> Point((-115.123412341234, 37.123412341234))  # rounded to 6 decimal places by default
{"coordinates": [-115.123412, 37.123412], "type": "Point"}

>>> Point((-115.12341234, 37.12341234), precision=8)  # rounded to 8 decimal places
{"coordinates": [-115.12341234, 37.12341234], "type": "Point"}

Helpful utilities

coords

geojson.utils.coords yields all coordinate tuples from a geometry or feature object.

>>> import geojson

>>> my_line = LineString([(-152.62, 51.21), (5.21, 10.69)])

>>> my_feature = geojson.Feature(geometry=my_line)

>>> list(geojson.utils.coords(my_feature))  # doctest: +ELLIPSIS
[(-152.62..., 51.21...), (5.21..., 10.69...)]

map_coords

geojson.utils.map_coords maps a function over all coordinate values and returns a geometry of the same type. Useful for scaling a geometry.

>>> import geojson

>>> new_point = geojson.utils.map_coords(lambda x: x/2, geojson.Point((-115.81, 37.24)))

>>> geojson.dumps(new_point, sort_keys=True)  # doctest: +ELLIPSIS
'{"coordinates": [-57.905..., 18.62...], "type": "Point"}'

map_tuples

geojson.utils.map_tuples maps a function over all coordinates and returns a geometry of the same type. Useful for changing coordinate order or applying coordinate transforms.

>>> import geojson

>>> new_point = geojson.utils.map_tuples(lambda c: (c[1], c[0]), geojson.Point((-115.81, 37.24)))

>>> geojson.dumps(new_point, sort_keys=True)  # doctest: +ELLIPSIS
'{"coordinates": [37.24..., -115.81], "type": "Point"}'

map_geometries

geojson.utils.map_geometries maps a function over each geometry in the input.

>>> import geojson

>>> new_point = geojson.utils.map_geometries(lambda g: geojson.MultiPoint([g["coordinates"]]), geojson.GeometryCollection([geojson.Point((-115.81, 37.24))]))

>>> geojson.dumps(new_point, sort_keys=True)
'{"geometries": [{"coordinates": [[-115.81, 37.24]], "type": "MultiPoint"}], "type": "GeometryCollection"}'

validation

is_valid property provides simple validation of GeoJSON objects.

>>> import geojson

>>> obj = geojson.Point((-3.68,40.41,25.14,10.34))
>>> obj.is_valid
False

errors method provides collection of errors when validation GeoJSON objects.

>>> import geojson

>>> obj = geojson.Point((-3.68,40.41,25.14,10.34))
>>> obj.errors()
'a position must have exactly 2 or 3 values'

generate_random

geojson.utils.generate_random yields a geometry type with random data

>>> import geojson

>>> geojson.utils.generate_random("LineString")  # doctest: +ELLIPSIS
{"coordinates": [...], "type": "LineString"}

>>> geojson.utils.generate_random("Polygon")  # doctest: +ELLIPSIS
{"coordinates": [...], "type": "Polygon"}

Development

To build this project, run python setup.py build. To run the unit tests, run python setup.py test. To run the style checks, run flake8 (install flake8 if needed).

Credits

Obtain a GNSS position fix from an 11-millisecond raw GNSS signal snapshot

Obtain a GNSS position fix from an 11-millisecond raw GNSS signal snapshot without any prior knowledge about the position of the receiver and only coarse knowledge about the time.

Jonas Beuchert 2 Nov 17, 2022
A NASA MEaSUREs project to provide automated, low latency, global glacier flow and elevation change datasets

Notebooks A NASA MEaSUREs project to provide automated, low latency, global glacier flow and elevation change datasets This repository provides tools

NASA Jet Propulsion Laboratory 27 Oct 25, 2022
Tool to suck data from ArcGIS Server and spit it into PostgreSQL

chupaESRI About ChupaESRI is a Python module/command line tool to extract features from ArcGIS Server map services. Name? Think "chupacabra" or "Chupa

John Reiser 34 Dec 04, 2022
GeoIP Legacy Python API

MaxMind GeoIP Legacy Python Extension API Requirements Python 2.5+ or 3.3+ GeoIP Legacy C Library 1.4.7 or greater Installation With pip: $ pip instal

MaxMind 230 Nov 10, 2022
Focal Statistics

Focal-Statistics The Focal statistics tool in many GIS applications like ArcGIS, QGIS and GRASS GIS is a standard method to gain a local overview of r

Ifeanyi Nwasolu 1 Oct 21, 2021
Mmdb-server - An open source fast API server to lookup IP addresses for their geographic location

mmdb-server mmdb-server is an open source fast API server to lookup IP addresses

Alexandre Dulaunoy 67 Nov 25, 2022
Simple, concise geographical visualization in Python

Geographic visualizations for HoloViews. Build Status Coverage Latest dev release Latest release Docs What is it? GeoViews is a Python library that ma

HoloViz 445 Jan 02, 2023
Constraint-based geometry sketcher for blender

Geometry Sketcher Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like

1.7k Jan 02, 2023
Rasterio reads and writes geospatial raster datasets

Rasterio Rasterio reads and writes geospatial raster data. Geographic information systems use GeoTIFF and other formats to organize and store gridded,

Mapbox 1.9k Jan 07, 2023
Expose a GDAL file as a HTTP accessible on-the-fly COG

cogserver Expose any GDAL recognized raster file as a HTTP accessible on-the-fly COG (Cloud Optimized GeoTIFF) The on-the-fly COG file is not material

Even Rouault 73 Aug 04, 2022
An API built to format given addresses using Python and Flask.

An API built to format given addresses using Python and Flask. About The API returns properly formatted data, i.e. removing duplicate fields, distingu

1 Feb 27, 2022
Simple CLI for Google Earth Engine Uploads

geeup: Simple CLI for Earth Engine Uploads with Selenium Support This tool came of the simple need to handle batch uploads of both image assets to col

Samapriya Roy 79 Nov 26, 2022
scalable analysis of images and time series

thunder scalable analysis of image and time series analysis in python Thunder is an ecosystem of tools for the analysis of image and time series data

thunder-project 813 Dec 29, 2022
Program that shows all the details of the given IP address. Build with Python and ipinfo.io API

ip-details This is a program that shows all the details of the given IP address. Build with Python and ipinfo.io API Usage To use this program, run th

4 Mar 01, 2022
pure-Python (Numpy optional) 3D coordinate conversions for geospace ecef enu eci

Python 3-D coordinate conversions Pure Python (no prerequistes beyond Python itself) 3-D geographic coordinate conversions and geodesy. API similar to

Geospace code 292 Dec 29, 2022
Python tools for geographic data

GeoPandas Python tools for geographic data Introduction GeoPandas is a project to add support for geographic data to pandas objects. It currently impl

GeoPandas 3.5k Jan 03, 2023
Histogram matching plugin for rasterio

rio-hist Histogram matching plugin for rasterio. Provides a CLI and python module for adjusting colors based on histogram matching in a variety of col

Mapbox 75 Sep 23, 2022
A library to access OpenStreetMap related services

OSMPythonTools The python package OSMPythonTools provides easy access to OpenStreetMap (OSM) related services, among them an Overpass endpoint, Nomina

Franz-Benjamin Mocnik 342 Dec 31, 2022
Pure python WMS

Ogcserver Python WMS implementation using Mapnik. Depends Mapnik = 0.7.0 (and python bindings) Pillow PasteScript WebOb You will need to install Map

Mapnik 130 Dec 28, 2022
WIP: extracting Geometry utilities from datacube-core

odc.geo This is still work in progress. This repository contains geometry related code extracted from Open Datacube. For details and motivation see OD

Open Data Cube 34 Jan 09, 2023