AERO 421: Spacecraft Attitude, Dynamics, and Control Final Project.

Overview

AERO - 421 Final Project Redevelopment

Spacecraft Attitude, Dynamics, and Control: Simulation to determine and control a satellite's attitude in LEO.

Background

AERO-421, or Spacecraft Attitude, Dynamics, and Controls, is a class taught at the California Polytechnic State University at San Luis Obispo (Cal Poly SLO) which serves as an...

"Introduction to spacecraft attitude dynamics and control... [and] fundamentals of guidance and navigation systems... [with emphasis in] analysis and design of control systems for aerospace vehicles." - Cal Poly Aerospace Engineering Course Catalog

The final project in the course was to develop a simulation to determine a satellite's attitude in Low Earth Orbit (LEO), consider and model detumbling from a launch vehicle, consider and model disturbances due to external forces i.e., Solar Radiation Pressure (SRP), and to consider and model control via onboard reaction wheels.

More information regarding the 6 different parts can be found below.

The initial project was developed in MATLAB, however, the project will be completely redeveloped in Python to showcase controls and software development skillsets.

Part 0: Context and Given Data

The project will explore modeling and simulation of the various stages of a spacecraft mission, specifically simulating the attitude dynamics from initial spacecraft deployment to operation. In this simulation, the spacecraft is an Earth observing satellite and an attitude determination and control system must be designed using reaction wheels to ensure the spacecraft maintains pointing nadir.

Orbital Data:

  • h (angular momentum) = 53335.2 km^2/s
  • e (eccentricity) = 0
  • Ω (Right Ascension of Ascending Node) = 0 deg
  • i (inclination) = 98.43 deg
  • ω (Argument of Perigee) = 0 deg
  • θ (True Anomaly) = 0 deg
  • ϵ-LVLH (Initial Quaternion relating the body to the LVLH frame) = [0, 0, 0]; η = 1

Detumble Phase:

  • Spacecraft is a square box with 2 meters on each edge with total mass of 640 kg
  • Initial Angular Velocity of [-0.05, 0.03, 0.2] rad/s relating the body to the ECI frame

Normal Operations:

  • Spacecraft bus is a 2 meter cube with mass of 500 kg. The center of mass of the spacecraft is located at the geometric center of the bus.
  • A rectangular sensor is attached to the face pointing towards the Earth (+Z-axis) and is 1 meter long and 0.25 meters square. The sensor has a mass of 100 kg.
  • Two solar panels are deployed along the +/- Y-axis and are constrained to rotate about the +/- Y-axis. The solar panels are 3 meters long (in the Y-axis), 2 meters wide, and 0.05 meters thick. Each panel has a mass of 20 kg and the center of mass is located at the geometric center of the panel. The solar panels do not rotate relative to the spacecraft bus.
  • Assume all spacecraft components have uniform density with centers of mass located at the geometric centers of each component
  • Magnetically, the spacecraft residual magnetic dipole moment can be modeled as pointing in the -Z direction with magnitude 0.5 A-m^2
  • See the figure below for the spacecraft schematic
  • Because the thrusters are not actually fully-modulated thrusters, the spacecraft will have a residual angular velocity of [0.001, -0.001, 0.002] rad/s relating the body to the ECI frame after the detumble phase.
  • During operation the spacecraft is required to point at the target on the ground to within 0.001 degrees 3-sigma using the reaction wheels used in the reaction wheels part.

Spacecraft Schematic

Part 1: Mass Properties

Determine the mass and inertial properties of the spacecraft for both the detumble and the normal operations phases.

Outputs:

  • Total mass of the spacecraft
  • Center of mass relative to the spacecraft bus center of mass. The body frame will be located at the center of mass of the whole spacecraft
  • Intertia matrix of the whole spacecraft about the center of mass of the spacecraft

Part 2: Torque Free Motion

Model the torque free orbital and attitude motion of the spacecraft

Outputs: Plots for...

  • Euler angles and quaternions relating body to ECI reference frames
  • Angular velocity of the spacecraft in body components for one orbit of the normal operations phase

Part 3: Detumble

Simulate the motion of the satellite during the detumble phase. Assume fully modulated thrusters and use direct velocity feedback

Outputs: Plots for...

  • Euler angles and quaternions relating body to ECI reference frames
  • Angular velocity of the spacecraft in body components for the detumble phase
  • Torque components in the body frame

Part 4: Disturbance Simulation

Add the four disturbance models to the simulation:

  • Atmospheric Drag
  • Solar Pressure
  • Gravity Gradient
  • Earth Magnetic Field

Use the following model for the atmospheric density. Notice that h is the height above the Earth's surface in kilometers where R_Earth equals 6378km

Disturbance Model

Consider the simulation epoch to be March 20, 2021. Disregard any variations of the ECI representation of the sunlight direction during the simulation.

Outputs: Plots for...

  • Euler angles and quaternions relating the body to the ECI reference frame
  • Euler angles and quaternions relating the body to the LVLH reference frame
  • Angular velocity of the spacecraft relative to the ECI frame expressed in body components
  • Angular velocity of the spacecraft relative to the LVLH frame expressed in body components
  • Torque components for atmospheric drag, solar radiation pressure, gravity gradient, and earth magnetic field

Part 5: Reaction Wheel Control

Determine the control gains for a full state feedback 3-axis reaction wheel control system. Use the requirements of ζ = 0.65 and t_s = 30 sec

The positions of the 3 reaction wheels are [1, 0, 0], [0, 1, 0], and [0, 0, 1]. Each reaction wheel can be modeled as a simple cylinder with radius of 0.3 m and a height of 0.02 m

Outputs: Plots for...

  • Euler angles and quaternions relating the body to ECI reference frame
  • Euler angles and quaternions relating the body to LVLH reference frame
  • Angular velocity of the spacecraft relative to the ECI reference frame expressed in body components
  • Angular velocity of the spacecraft relative to LVLH frame expressed in body components
  • Commanded moment from the determined control law
  • Wheel speed of each reaction wheel

Part 6: Visualization

Determine and animate the quanterions of the spacecraft, from ECI to body frame, for the duration of 1-5 revolutions.

Output:

  • Table of quaternion and time data
  • Video or other animation file to show the revolution of the spacecraft
Owner
Gagandeep Thapar
- (he/they) - 4th year Aerospace Engineering (w/ CS Minor) at Cal Poly SLO - Interested in Launch Vehicle and Spacecraft Controls and Avionics
Gagandeep Thapar
iot-dashboard: Fully integrated architecture platform with a dashboard for Logistics Monitoring, Internet of Things.

Fully integrated architecture platform with a dashboard for Logistics Monitoring, Internet of Things. Written in Python. Flask applicati

2 Jul 29, 2022
Programming of Robotics Systems course at the University of Aveiro, Portugal, 2021-2022.

Programação de Sistemas Robóticos Miguel Riem Oliveira Universidade de Aveiro 2021-2022 Projeto AtlasCar Projecto RACE IROS 2014 AtlasCar2 ATOM IROS 2

Miguel Riem de Oliveira 22 Jul 13, 2022
Pinion — Nice-looking interactive diagrams for KiCAD PCBs

Pinion — Nice-looking interactive diagrams for KiCAD PCBs Pinion is a simple tool that allows you to make a nice-looking pinout diagrams for your PCBs

Jan Mrázek 297 Jan 06, 2023
The project is an open-source and low-cost kit to get started with underactuated robotics.

Torque Limited Simple Pendulum Introduction The project is an open-source and low-cost kit to get started with underactuated robotics. The kit targets

34 Dec 14, 2022
Blender Camera Switcher

Blender Camera Switcher A simple camera switcher addon for blender. Useful when use reference image for camera. This addon will automatically fix the

Corgice 1 Jan 31, 2022
Final-project-robokeeper created by GitHub Classroom

RoboKeeper! Jonny Bosnich, Joshua Cho, Lio Liang, Marco Morales, Cody Nichoson Demonstration Videos Grabbing the paddle: https://youtu.be/N0HPvFNHrTw

Cody Nichoson 1 Dec 12, 2021
This is a collection of python modules that interact with the Ryze Tello drone.

This is a collection of python modules that interact with the Ryze Tello drone.

DJI-SDK 1.2k Jan 03, 2023
Lego Mindstorms EV3 and Lego Spike Prime

Lego Mindstorms EV3 and Lego Spike Prime What is FLL? The FIRST LEGO League Challenge Robotics Tournament challenges students from 9 to 16 years old t

Danimar Campos da Costa 1 Nov 14, 2021
Event-based hardware simulation framework

An event-based multi-device simulation framework providing configuration and orchestration of complex multi-device simulations.

Diamond Light Source Controls Group 3 Feb 01, 2022
Play music on Raspberry Pi Pico Without CPU involvement

MicroPython_PIO_Music_DMA Play music on Raspberry Pi Pico Without CPU involvement This is based on PIOBeep (https://github.com/benevpi/pico_pio_buzz)

3 Nov 27, 2022
Custom component for Home Assistant that integrates Candy/Haier Wi-Fi washing machines (also known as Simply-Fi).

Candy Home Assistant component Custom component for Home Assistant that integrates Candy/Haier Wi-Fi washing machines (also known as Simply-Fi). This

Olivér Falvai 61 Dec 29, 2022
This repo uses a stereo camera and gray-code-based structured light to realize dense 3D reconstruction.

Structured-light-stereo This repo uses a stereo camera and gray-code-based structured light to realize dense 3D reconstruction. . How to use: STEP 1:

FEI 20 Dec 31, 2022
Zev es un Bot/Juego RPG de Discord creado en y para aprender Python.

Zev es un Bot/Juego RPG de Discord creado en y para aprender Python.

Julen Smith 3 Jan 12, 2022
a library for using WS2812b leds (aka neopixels) with Raspberry Pi Pico

pico_ws2812b a library for using WS2812b leds (aka neopixels) with Raspberry Pi Pico You'll first need to save the ws2812b.py file to your device (for

76 Nov 25, 2022
Automatic CPU speed & power optimizer for Linux

Automatic CPU speed & power optimizer for Linux based on active monitoring of laptop's battery state, CPU usage, CPU temperature and system load. Ultimately allowing you to improve battery life witho

Adnan Hodzic 3.4k Jan 07, 2023
Component for deep integration LedFx from Home Assistant.

LedFX for Home Assistant Component for deep integration LedFx from Home Assistant. Table of Contents FAQ Install Config Performance FAQ Q. What versio

Dmitry Mamontov 28 Dec 13, 2022
A ESP32 project template with a web interface built in React

ESP AP Webserver demo.mp4 This is my experiment with "mobile app development" for the ESP32. The project consists of two parts, the ESP32 code and the

8 Dec 15, 2022
Python script for printing to the Hanshow price-tag

This repository contains Python code for talking to the ATC_TLSR_Paper open-source firmware for the Hanshow e-paper pricetag. Installation # Clone the

12 Oct 06, 2022
Home Assistant custom integration for e-distribución

e-Distribución is an energy distribution company that covers most of South Spain area. If you live in this area, you probably are able to register into their website to get some information about you

VMG 17 Sep 07, 2022
Imbalaced Classification and Robust Semantic Segmentation

Imbalaced Classification and Robust Semantic Segmentation This repo implements two algoritms. The imbalance clibration (IC) algorithm for image classi

24 Jul 23, 2022