GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

Overview

GeneDisco: A benchmark for active learning in drug discovery

Python version Library version

In vitro cellular experimentation with genetic interventions, using for example CRISPR technologies, is an essential step in early-stage drug discovery and target validation that serves to assess initial hypotheses about causal associations between biological mechanisms and disease pathologies. With billions of potential hypotheses to test, the experimental design space for in vitro genetic experiments is extremely vast, and the available experimental capacity - even at the largest research institutions in the world - pales in relation to the size of this biological hypothesis space.

GeneDisco (published at ICLR-22) is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery. GeneDisco contains a curated set of multiple publicly available experimental data sets as well as open-source i mplementations of state-of-the-art active learning policies for experimental design and exploration.

GeneDisco ICLR-22 Challenge

Learn more about the GeneDisco challenge for experimental design for optimally exploring the vast genetic intervention space here.

Install

pip install genedisco

Use

How to Run the Full Benchmark Suite?

Experiments (all baselines, acquisition functions, input and target datasets, multiple seeds) included in GeneDisco can be executed sequentially for e.g. acquired batch size 64, 8 cycles and a bayesian_mlp model using:

run_experiments \
  --cache_directory=/path/to/genedisco_cache  \
  --output_directory=/path/to/genedisco_output  \
  --acquisition_batch_size=64  \
  --num_active_learning_cycles=8  \
  --max_num_jobs=1

Results are written to the folder at /path/to/genedisco_cache, and processed datasets will be cached at /path/to/genedisco_cache (please replace both with your desired paths) for faster startup in future invocations.

Note that due to the number of experiments being run by the above command, we recommend execution on a compute cluster.
The GeneDisco codebase also supports execution on slurm compute clusters (the slurm command must be available on the executing node) using the following command and using dependencies in a Python virtualenv available at /path/to/your/virtualenv (please replace with your own virtualenv path):

run_experiments \
  --cache_directory=/path/to/genedisco_cache  \
  --output_directory=/path/to/genedisco_output  \
  --acquisition_batch_size=64  \
  --num_active_learning_cycles=8  \
  --schedule_on_slurm \
  --schedule_children_on_slurm \
  --remote_execution_virtualenv_path=/path/to/your/virtualenv

Other scheduling systems are currently not supported by default.

How to Run A Single Isolated Experiment (One Learning Cycle)?

To run one active learning loop cycle, for example, with the "topuncertain" acquisition function, the "achilles" feature set and the "schmidt_2021_ifng" task, execute the following command:

active_learning_loop  \
    --cache_directory=/path/to/genedisco/genedisco_cache \
    --output_directory=/path/to/genedisco/genedisco_output \
    --model_name="bayesian_mlp" \
    --acquisition_function_name="topuncertain" \
    --acquisition_batch_size=64 \
    --num_active_learning_cycles=8 \
    --feature_set_name="achilles" \
    --dataset_name="schmidt_2021_ifng" 

How to Evaluate a Custom Acquisition Function?

To run a custom acquisition function, set --acquisition_function_name="custom" and --acquisition_function_path to the file path that contains your custom acquisition function.

active_learning_loop  \
    --cache_directory=/path/to/genedisco/genedisco_cache \
    --output_directory=/path/to/genedisco/genedisco_output \
    --model_name="bayesian_mlp" \
    --acquisition_function_name="custom" \
    --acquisition_function_path=/path/to/custom_acquisition_function.py \
    --acquisition_batch_size=64 \
    --num_active_learning_cycles=8 \
    --feature_set_name="achilles" \
    --dataset_name="schmidt_2021_ifng" 

...where "/path/to/custom_acquisition_function.py" contains code for your custom acquisition function corresponding to the BaseBatchAcquisitionFunction interface, e.g.:

import numpy as np
from typing import AnyStr, List
from slingpy import AbstractDataSource
from slingpy.models.abstract_base_model import AbstractBaseModel
from genedisco.active_learning_methods.acquisition_functions.base_acquisition_function import \
    BaseBatchAcquisitionFunction

class RandomBatchAcquisitionFunction(BaseBatchAcquisitionFunction):
    def __call__(self,
                 dataset_x: AbstractDataSource,
                 batch_size: int,
                 available_indices: List[AnyStr], 
                 last_selected_indices: List[AnyStr] = None, 
                 model: AbstractBaseModel = None,
                 temperature: float = 0.9,
                 ) -> List:
        selected = np.random.choice(available_indices, size=batch_size, replace=False)
        return selected

Note that the last class implementing BaseBatchAcquisitionFunction is loaded by GeneDisco if there are multiple valid acquisition functions present in the loaded file.

Citation

Please consider citing, if you reference or use our methodology, code or results in your work:

@inproceedings{mehrjou2022genedisco,
    title={{GeneDisco: A Benchmark for Experimental Design in Drug Discovery}},
    author={Mehrjou, Arash and Soleymani, Ashkan and Jesson, Andrew and Notin, Pascal and Gal, Yarin and Bauer, Stefan and Schwab, Patrick},
    booktitle={{International Conference on Learning Representations (ICLR)}},
    year={2022}
}

License

License

Authors

Patrick Schwab, GlaxoSmithKline plc
Arash Mehrjou, GlaxoSmithKline plc
Andrew Jesson, University of Oxford
Ashkan Soleymani, MIT

Acknowledgements

PS and AM are employees and shareholders of GlaxoSmithKline plc.

HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
Age and Gender prediction using Keras

cnn_age_gender Age and Gender prediction using Keras Dataset example : Description : UTKFace dataset is a large-scale face dataset with long age span

XN3UR0N 58 May 03, 2022
A forwarding MPI implementation that can use any other MPI implementation via an MPI ABI

MPItrampoline MPI wrapper library: MPI trampoline library: MPI integration tests: MPI is the de-facto standard for inter-node communication on HPC sys

Erik Schnetter 31 Dec 22, 2022
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
Official pytorch code for SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal

SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal This is the official pytorch code for SSAT: A Symmetric Semantic-

ForeverPupil 57 Dec 13, 2022
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed

宋朝都 4 Aug 07, 2022
Temporal-Relational CrossTransformers

Temporal-Relational Cross-Transformers (TRX) This repo contains code for the method introduced in the paper: Temporal-Relational CrossTransformers for

83 Dec 12, 2022
PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks

PyDEns PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks. With PyDEns one can solve PD

Data Analysis Center 220 Dec 26, 2022
PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).

NHDRRNet-PyTorch This is the PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020). 0. Differences between Original Paper and

Yutong Zhang 1 Mar 01, 2022
This is the official code release for the paper Shape and Material Capture at Home

This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashl

89 Dec 10, 2022
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali

Open source projects of ShangHua-Gao 76 Nov 09, 2022
(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Realistic evaluation of transductive few-shot learning Introduction This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evalua

Olivier Veilleux 14 Dec 13, 2022
Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022