RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

Related tags

Deep LearningRMNA
Overview

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

Our code is based on Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs

This README is also based on it.

This repository contains a Pytorch implementation of RMNA. We use AMIE to obtains horn rules. RMNA is a hierarchical neighbor aggregation model, which transforms valuable multi-hop neighbors into one-hop neighbors that are semantically similar to the corresponding multi-hop neighbors, so that the completeness of multi-hop neighbors can be ensured.

Requirements

Please download miniconda from above link and create an environment using the following command:

    conda env create -f pytorch35.yml

Activate the environment before executing the program as follows:

    source activate pytorch35

Dataset

We used two datasets for evaluating our model. All the datasets and their folder names are given below.

  • Freebase: FB15k-237
  • Wordnet: WN18RR

Rule Mining and Filtering

In the AMINE+ folder, we can generate mining rules by using the following command:

    java -jar amie_plus.jar [TSV file]

Without additional arguments AMIE+ thresholds using PCA confidence 0.1 and head coverage 0.01. You can change these default settings. See AMIE. The available files generated and processed by AMIE are placed in the folder of the corresponding dataset named new_triple.

Training

Parameters:

--data: Specify the folder name of the dataset.

--epochs_gat: Number of epochs for gat training.

--epochs_conv: Number of epochs for convolution training.

--lr: Initial learning rate.

--weight_decay_gat: L2 reglarization for gat.

--weight_decay_conv: L2 reglarization for conv.

--get_2hop: Get a pickle object of 2 hop neighbors.

--use_2hop: Use 2 hop neighbors for training.

--partial_2hop: Use only 1 2-hop neighbor per node for training.

--output_folder: Path of output folder for saving models.

--batch_size_gat: Batch size for gat model.

--valid_invalid_ratio_gat: Ratio of valid to invalid triples for GAT training.

--drop_gat: Dropout probability for attention layer.

--alpha: LeakyRelu alphas for attention layer.

--nhead_GAT: Number of heads for multihead attention.

--margin: Margin used in hinge loss.

--batch_size_conv: Batch size for convolution model.

--alpha_conv: LeakyRelu alphas for conv layer.

--valid_invalid_ratio_conv: Ratio of valid to invalid triples for conv training.

--out_channels: Number of output channels in conv layer.

--drop_conv: Dropout probability for conv layer.

How to run

When running for first time, run preparation script with:

    $ sh prepare.sh
  • Freebase

      $ python3 main.py --data ./data/FB15k-237/ --epochs_gat 2000 --epochs_conv 150  --get_2hop True --partial_2hop True --batch_size_gat 272115 --margin 1 --out_channels 50 --drop_conv 0.3 --output_folder ./checkpoints/fb/out/
    
  • Wordnet

      $ python3 main.py --data ./data/WN18RR/--epochs_gat 3600 --epochs_conv 150 --get_2hop True --partial_2hop True
    
Owner
宋朝都
宋朝都
IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

IJON SPACE EXPLORER IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotati

Chair for Sys­tems Se­cu­ri­ty 146 Dec 16, 2022
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
Facestar dataset. High quality audio-visual recordings of human conversational speech.

Facestar Dataset Description Existing audio-visual datasets for human speech are either captured in a clean, controlled environment but contain only a

Meta Research 87 Dec 21, 2022
A lightweight tool to get an AI Infrastructure Stack up in minutes not days.

K3ai will take care of setup K8s for You, deploy the AI tool of your choice and even run your code on it.

k3ai 105 Dec 04, 2022
Explainable Zero-Shot Topic Extraction

Zero-Shot Topic Extraction with Common-Sense Knowledge Graph This repository contains the code for reproducing the results reported in the paper "Expl

D2K Lab 56 Dec 14, 2022
IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID,

Intermediate Domain Module (IDM) This repository is the official implementation for IDM: An Intermediate Domain Module for Domain Adaptive Person Re-I

Yongxing Dai 87 Nov 22, 2022
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

417 Dec 20, 2022
DAN: Unfolding the Alternating Optimization for Blind Super Resolution

DAN-Basd-on-Openmmlab DAN: Unfolding the Alternating Optimization for Blind Super Resolution We reproduce DAN via mmediting based on open-sourced code

AlexZou 72 Dec 13, 2022
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
Deep Learning tutorials in jupyter notebooks.

DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi

Sachin Abeywardana 1.8k Dec 28, 2022
A voice recognition assistant similar to amazon alexa, siri and google assistant.

kenyan-Siri Build an Artificial Assistant Full tutorial (video) To watch the tutorial, click on the image below Installation For windows users (run th

Alison Parker 3 Aug 19, 2022
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

20 Dec 27, 2022
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)

G3NN This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper: A

Jiaqi Ma 14 Oct 11, 2022
Python scripts for performing stereo depth estimation using the HITNET Tensorflow model.

HITNET-Stereo-Depth-estimation Python scripts for performing stereo depth estimation using the HITNET Tensorflow model from Google Research. Stereo de

Ibai Gorordo 76 Jan 02, 2023
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Visual Attributes in the Wild (VAW) This repository provides data for the VAW dataset as described in the CVPR 2021 Paper: Learning to Predict Visual

Adobe Research 36 Dec 30, 2022