Run object detection model on the Raspberry Pi

Overview

Intro

Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.

This is the guide for installing TensorFlow Lite on the Raspberry Pi and running pre-trained object detection models on it.

Step 1. Setting up Rasperry Pi

Upgrade Raspbian Stretch to Buster

(If you on Buster, skip this step and simply run sudo apt-get update and sudo apt-get dist-upgrade)

$ sudo apt-get update && sudo apt-get upgrade -y

Verify nothing is wrong. Verify no errors are reported after each command. Fix as required (you’re on your own here!).

$ dpkg -C
$ apt-mark showhold

Prepare apt-get Sources

Update the sources to apt-get. This replaces “stretch” with “buster” in the repository locations giving apt-get access to the new version’s binaries.

$ sudo sed -i 's/stretch/buster/g' /etc/apt/sources.list    
$ sudo sed -i 's/stretch/buster/g' /etc/apt/sources.list.d/raspi.list

Verify this caught them all by running the following, expecting no output. If the command returns anything having previously run the sed commands above, it means more files may need tweaking. Run the sed command for each. The aim is to replace all instances of “stretch”.

$ grep -lnr stretch /etc/apt

Speed up subsequent steps by removing the list change package.

$ sudo apt-get remove apt-listchanges

Do the Upgrade

To update existing packages without updating kernel modules or removing packages, run the following.

$ sudo apt-get update && sudo apt-get upgrade -y

Alternatively, to include kernel modules and removing packages if required, run the following

$ sudo apt-get update && sudo apt-get full-upgrade -y

Cleanup old outdated packages.

$ sudo apt-get autoremove -y && sudo apt-get autoclean

Verify with

 cat /etc/os-release.

Update Firmware

$ sudo rpi-update

and

sudo apt-get install -y python3-pip

and

pip3 install --upgrade setuptools

2. Making sure camera interface is enabled in the Raspberry Pi Configuration menu

Click the Pi icon in the top left corner of the screen, select Preferences -> Raspberry Pi Configuration, and go to the Interfaces tab and verify Camera is set to Enabled. If it isn't, enable it now, and reboot the Raspberry Pi.

Converting Tensorflow to Tensorflow Lite

Using TensorFlow Lite converter. It takes TensorFlow model and generates a TensorFlow Lite model (an optimized FlatBuffer format identified by the .tflite file extension).

Step 2. Install TF Lite dependecies and set up virtual environment

clone this repo

git clone https://github.com/yanovsk/Raspberry-Pi-TF-Lite-Object-Detection

rename the folder to "tfliteod"

mv Raspberry-Pi-TF-Lite-Object-Detection tfliteod
cd tfliteod

run shell script to install get_pi_requirements

bash get_pi_req.sh

Note: shell script will auto install the lastest version of Tensorflow. To install specific version of TF, run pip3 install tensorflow==x.xx (where x.xx stands for the version you want to install)

Set up virtual environment

Install vitrtualenv

pip3 install virtualenv 

Then, create the "tfliteod-env" virtual environment by issuing:

python3 -m venv tfliteod-env

This will create a folder called tfliteod-env inside the tflite1 directory. The tfliteod-env folder will hold all the package libraries for this environment. Next, activate the environment by issuing:

source tfliteod-env/bin/activate

Step 3. Set up TensorFlow Lite detection model

Once, tensorflow is install we can proceed to seting up the object detection model.

We can use either pre-trained model or train it on our end. For the simplicity sake let's use pre-trained sample model by google

Download the sample model (also could be done thru direct link here)

wget https://storage.googleapis.com/download.tensorflow.org/models/tflite/coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip

upzip it

unzip coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip -d Sample_model

Step 4. Run the model

Note: the model should work on either Picamera module or any other webcam plugged in to the Raspberry Pi as a usb device.

From home/pi/tfliteod run the following command:

python3 TFL_object_detection.py --modeldir=Sample_model

After initializing webcam window should pop-up on your Raspebbery Pi and object detection should work.

Note: this model can recongnize only 80 common objects (check labels.txt for more info on metadata)

However, you can custom train the model using this guide.

Happy hacking!

Owner
Dimitri Yanovsky
Dimitri Yanovsky
NeurIPS-2021: Neural Auto-Curricula in Two-Player Zero-Sum Games.

NAC Official PyTorch implementation of NAC from the paper: Neural Auto-Curricula in Two-Player Zero-Sum Games. We release code for: Gradient based ora

Xidong Feng 19 Nov 11, 2022
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
A Simulated Optimal Intrusion Response Game

Optimal Intrusion Response An OpenAI Gym interface to a MDP/Markov Game model for optimal intrusion response of a realistic infrastructure simulated u

Kim Hammar 10 Dec 09, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
Clustergram - Visualization and diagnostics for cluster analysis in Python

Clustergram Visualization and diagnostics for cluster analysis Clustergram is a diagram proposed by Matthias Schonlau in his paper The clustergram: A

Martin Fleischmann 96 Dec 26, 2022
Dcf-game-infrastructure-public - Contains all the components necessary to run a DC finals (attack-defense CTF) game from OOO

dcf-game-infrastructure All the components necessary to run a game of the OOO DC

Order of the Overflow 46 Sep 13, 2022
This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim

Rakshitha Godahewa 80 Dec 30, 2022
Python package for missing-data imputation with deep learning

MIDASpy Overview MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant

MIDASverse 77 Dec 03, 2022
Attempt at implementation of a simple GAN using Keras

Simple GAN This is my attempt to make a wrapper class for a GAN in keras which can be used to abstract the whole architecture process. Simple GAN Over

Deven96 7 May 23, 2019
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
Linear image-to-image translation

Linear (Un)supervised Image-to-Image Translation Examples for linear orthogonal transformations in PCA domain, learned without pairing supervision. Tr

Eitan Richardson 40 Aug 31, 2022
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions

README Repository containing the code for the paper "Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions". Specifically, an

Yousef Emam 13 Nov 24, 2022
Implementation of Research Paper "Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation"

Zero-DCE and Zero-DCE++(Lite architechture for Mobile and edge Devices) Papers Abstract The paper presents a novel method, Zero-Reference Deep Curve E

Tauhid Khan 15 Dec 10, 2022