UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

Related tags

Deep LearningUmlsBERT
Overview

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

General info

This is the code that was used of the paper : UmlsBERT: Augmenting Contextual Embeddings with a Clinical Metathesaurus (NAACL 2021).

In this work, we introduced UmlsBERT, a contextual embedding model capable of integrating domain knowledge during pre-training. It was trained on biomedical corpora and uses the Unified Medical Language System (UMLS) clinical metathesaurus in two ways:

  • We proposed a new multi-label loss function for the pre-training of the Masked Language Modelling (Masked LM) task of UmlsBERT that considers the connections between medical words using the CUI attribute of UMLS.

  • We introduced a semantic group embedding that enriches the input embeddings process of UmlsBERT by forcing the model to take into consideration the association of the words that are part of the same semantic group.

Technologies

This project was created with python 3.7 and PyTorch 0.4.1 and it is based on the transformer github repo of the huggingface team

Setup

We recommend installing and running the code from within a virtual environment.

Creating a Conda Virtual Environment

First, download Anaconda from this link

Second, create a conda environment with python 3.7.

$ conda create -n umlsbert python=3.7

Upon restarting your terminal session, you can activate the conda environment:

$ conda activate umlsbert 

Install the required python packages

In the project root directory, run the following to install the required packages.

pip3 install -r requirements.txt

Install from a VM

If you start a VM, please run the following command sequentially before install the required python packages. The following code example is for a vast.ai Virtual Machine.

apt-get update
apt install git-all
apt install python3-pip
apt-get install jupyter

Dowload pre-trained UmlsBERT model

In order to use pre-trained UmlsBERT model for the word embeddings (or the semantic embeddings), you need to dowload it into the folder examples/checkpoint/ from the link:

 wget -O umlsbert.tar.xz https://www.dropbox.com/s/kziiuyhv9ile00s/umlsbert.tar.xz?dl=0

into the folder examples/checkpoint/ and unzip it with the following command:

tar -xvf umlsbert.tar.xz

Reproduce UmlsBERT

Pretraining

  • The UmlsBERT was pretrained on the MIMIC data. Unfortunately, we cannot provide the text of the MIMIC III dataset as training course is mandatory in order to access the particular dataset.

  • The MIMIC III dataset can be downloaded from the following link

  • The pretraining an UmlsBERT model depends on data from NLTK so you'll have to download them. Run the Python interpreter (python3) and type the commands:

>>> import nltk
>>> nltk.download('punkt')
  • After downloading the NOTEEVENTS table in the examples/language-modeling/ folder, run the following python code that we provide in the examples/language-modeling/ folder to create the mimic_string.txt on the folder examples/language-modeling/:
python3 mimic.py

you can pre-trained a UmlsBERT model by running the following command on the examples/language-modeling/:

Example for pretraining Bio_clinicalBert:

python3 run_language_modeling.py --output_dir ./models/clinicalBert-v1  --model_name_or_path  emilyalsentzer/Bio_ClinicalBERT  --mlm     --do_train     --learning_rate 5e-5     --max_steps 150000   --block_size 128   --save_steps 1000     --per_gpu_train_batch_size 32     --seed 42     --line_by_line      --train_data_file mimic_string.txt  --umls --config_name  config.json --med_document ./voc/vocab_updated.txt

Downstream Tasks

MedNLi task

  • MedNLI is available through the MIMIC-III derived data repository. Any individual certified to access MIMIC-III can access MedNLI through the following link

    • Converting into an appropriate format: After downloading and unzipping the MedNLi dataset (mednli-a-natural-language-inference-dataset-for-the-clinical-domain-1.0.0.zip) on the folder examples/text-classification/dataset/mednli/, run the following python code in the examples/text-classification/dataset/mednli/ folder that we provide in order to convert the dataset into a format that is appropriate for the UmlsBERT model
python3  mednli.py
  • This python code will create the files: train.tsv,dev_matched.tsv and test_matched.tsv in the text-classification/dataset/mednli/mednli folder
  • We provide an example-notebook under the folder experiements/:

or directly run UmlsBert on the text-classification/ folder:

python3 run_glue.py --output_dir ./models/medicalBert-v1 --model_name_or_path  ../checkpoint/umlsbert   --data_dir  dataset/mednli/mednli  --num_train_epochs 3 --per_device_train_batch_size 32  --learning_rate 1e-4   --do_train --do_eval  --do_predict  --task_name mnli --umls --med_document ./voc/vocab_updated.txt

NER task

  • Due to the copyright issue of i2b2 datasets, in order to download them follow the link.

    • Converting into an appropriate format: Since we wanted to directly compare with the Bio_clinical_Bert we used their code in order to convert the i2b2 dataset to a format which is appropriate for the BERT architecture which can be found in the following link: link

    We provide the code for converting the i2b2 dataset with the following instruction for each dataset:

  • i2b2 2006:

    • In the folder token-classification/dataset/i2b2_preprocessing/i2b2_2006_deid unzip the deid_surrogate_test_all_groundtruth_version2.zip and deid_surrogate_train_all_version2.zip
    • run the create.sh scrip with the command ./create.sh
    • The script will create the files: label.txt, dev.txt, test.txt, train.txt in the token-classification/dataset/NER/2006 folder
  • i2b2 2010:

    • In the folder token-classification/dataset/i2b2_preprocessing/i2b2_2010_relations unzip the test_data.tar.gz, concept_assertion_relation_training_data.tar.gz and reference_standard_for_test_data.tar.gz
    • Run the jupyter notebook Reformat.ipynb
    • The notebook will create the files: label.txt, dev.txt, test.txt, train.txt in the token-classification/dataset/NER/2010 folder
  • i2b2 2012:

    • In the folder token-classification/dataset/i2b2_preprocessing/i2b2_2012 unzip the 2012-07-15.original-annotation.release.tar.gz and 2012-08-08.test-data.event-timex-groundtruth.tar.gz
    • Run the jupyter notebook Reformat.ipynb
    • The notebook will create the files: label.txt, dev.txt, test.txt, train.txt in the token-classification/dataset/NER/2012 folder
  • i2b2 2014:

    • In the folder token-classification/dataset/i2b2_preprocessing/i2b2_2014_deid_hf_risk unzip the 2014_training-PHI-Gold-Set1.tar.gz,training-PHI-Gold-Set2.tar.gz and testing-PHI-Gold-fixed.tar.gz
    • Run the jupyter notebook Reformat.ipynb
    • The notebook will create the files: label.txt, dev.txt, test.txt, train.txt in the token-classification/dataset/NER/2014 folder
  • We provide an example-notebook under the folder experiements/:

or directly run UmlsBert on the token-classification/ folder:

python3 run_ner.py --output_dir ./models/medicalBert-v1 --model_name_or_path  ../checkpoint/umlsbert    --labels dataset/NER/2006/label.txt --data_dir  dataset/NER/2006 --do_train --num_train_epochs 20 --per_device_train_batch_size 32  --learning_rate 1e-4  --do_predict --do_eval --umls --med_document ./voc/vocab_updated.txt

If you find our work useful, can cite our paper using:

@misc{michalopoulos2020umlsbert,
      title={UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus}, 
      author={George Michalopoulos and Yuanxin Wang and Hussam Kaka and Helen Chen and Alex Wong},
      year={2020},
      eprint={2010.10391},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Memory efficient transducer loss computation

Introduction This project implements the optimization techniques proposed in Improving RNN Transducer Modeling for End-to-End Speech Recognition to re

Fangjun Kuang 51 Nov 25, 2022
Jittor implementation of PCT:Point Cloud Transformer

PCT: Point Cloud Transformer This is a Jittor implementation of PCT: Point Cloud Transformer.

MenghaoGuo 547 Jan 03, 2023
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
An implementation of the AdaOPS (Adaptive Online Packing-based Search), which is an online POMDP Solver used to solve problems defined with the POMDPs.jl generative interface.

AdaOPS An implementation of the AdaOPS (Adaptive Online Packing-guided Search), which is an online POMDP Solver used to solve problems defined with th

9 Oct 05, 2022
An unofficial personal implementation of UM-Adapt, specifically to tackle joint estimation of panoptic segmentation and depth prediction for autonomous driving datasets.

Semisupervised Multitask Learning This repository is an unofficial and slightly modified implementation of UM-Adapt[1] using PyTorch. This code primar

Abhinav Atrishi 11 Nov 25, 2022
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and

Nathan Frey 32 Dec 06, 2022
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambig

็Ž‹็š“ๆณข 147 Jan 07, 2023
This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to generate a dynamic forecast from your own data.

๐Ÿ“ˆ Automated Time Series Forecasting Background: This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to gene

Zach Renwick 42 Jan 04, 2023
Server files for UltimateLabeling

UltimateLabeling server files Server files for UltimateLabeling. git clone https://github.com/alexandre01/UltimateLabeling_server.git cd UltimateLabel

Alexandre Carlier 4 Oct 10, 2022
Code for "Adversarial attack by dropping information." (ICCV 2021)

AdvDrop Code for "AdvDrop: Adversarial Attack to DNNs by Dropping Information(ICCV 2021)." Human can easily recognize visual objects with lost informa

Ranjie Duan 52 Nov 10, 2022
constructing maps of intellectual influence from publication data

Influencemap Project @ ANU Influence in the academic communities has been an area of interest for researchers. This can be seen in the popularity of a

CS Metrics 13 Jun 18, 2022
An addon uses SMPL's poses and global translation to drive cartoon character in Blender.

Blender addon for driving character The addon drives the cartoon character by passing SMPL's poses and global translation into model's armature in Ble

็Šนๅœจ้•œไธญ 153 Dec 14, 2022
Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images

Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images [ICCV 2021] ยฉ Mahmood Lab - This code is made avail

Mahmood Lab @ Harvard/BWH 63 Dec 01, 2022
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! ๐ŸŽ„ ๐ŸŽ… To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm ร…gren 5 Dec 29, 2022