Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

Overview

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

This is the code for the paper:

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels
Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, Li Fei-Fei
Presented at ICML 2018

Please note that this is not an officially supported Google product.

If you find this code useful in your research then please cite

@inproceedings{jiang2018mentornet,
  title={MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels},
  author={Jiang, Lu and Zhou, Zhengyuan and Leung, Thomas and Li, Li-Jia and Fei-Fei, Li},
  booktitle={ICML},
  year={2018}
}

Introduction

We are interested in training a deep network using curriculum learning (Bengio et al., 2009), i.e. learning examples with focus. Each curriculum is implemented as a network (called MentorNet).

  • During training, MentorNet supervises the training of the base network (called StudentNet).
  • At the test time, StudentNet makes prediction alone without MentorNet.

Training Overview

Setups

All code was developed and tested on Nvidia V100/P100 (16GB) the following environment.

  • Ubuntu 18.04
  • Python 2.7.15
  • TensorFlow 1.8.0
  • numpy 1.13.3
  • imageio 2.3.0

Download Cloud SDK to get data and models. Next we need to download the dataset and pre-trained MentorNet models. Put them into the same directory as the code directory.

gsutil -m cp -r gs://mentornet_project/data .
gsutil -m cp -r gs://mentornet_project/mentornet_models .

Alternatively, you may download the zip files: data and models.

Running MentorNet on CIFAR

export PYTHONPATH="$PYTHONPATH:$PWD/code/"

python code/cifar_train_mentornet.py \
  --dataset_name=cifar10   \
  --trained_mentornet_dir=mentornet_models/models/mentornet_pd1_g_1/mentornet_pd \
  --loss_p_precentile=0.75  \
  --nofixed_epoch_after_burn_in  \
  --burn_in_epoch=0  \
  --example_dropout_rates="0.5,17,0.05,83" \
  --data_dir=data/cifar10/0.2 \
  --train_log_dir=cifar_models/cifar10/resnet/0.2/mentornet_pd1_g_1/train \
  --studentnet=resnet101 \
  --max_number_of_steps=39000

A full list of commands can be found in this file. The training script has a number of command-line flags that you can use to configure the model architecture, hyperparameters, and input / output settings:

  • --trained_mentornet_dir: Directory where to find the trained MentorNet model, created by mentornet_learning/train.py.
  • --loss_p_percentile: p-percentile used to compute the loss moving average. Default is 0.7.
  • --burn_in_epoch: Number of first epochs to perform burn-in. In the burn-in period, every sample has a fixed 1.0 weight. Default is 0.
  • --fixed_epoch_after_burn_in: Whether to use the fixed epoch as the MentorNet input feature after the burn-in period. Set True for MentorNet DD. Default is False.
  • --loss_moving_average_decay: Decay factor used in moving average. Default is 0.5.
  • --example_dropout_rates: Comma-separated list indicating the example drop-out rate for the total of 100 epochs. The format is [dropout rate, epoch_num]+, the piecewise drop-out rate from boundaries and values. The sum of epoch_num is 100. Drop-out means the probability of setting sample weights to zeros proposed (Liang et al., 2016). Default is 0.5, 17, 0.05, 78, 1.0, 5.

To evaluate a model, run the evaluation job in parallel with the training job (on a different GPU).

python cifar/cifar_eval.py \
 --dataset_name=cifar10 \
 --data_dir=cifar/data/cifar10/val/ \
 --checkpoint_dir=cifar_models/cifar10/resnet/0.2/mentornet_pd1_g_1/train \
 --eval_dir=cifar_models/cifar10/resnet/0.2/mentornet_pd1_g_1//eval_val \
 --studentnet=resnet101 \
 --device_id=1

A complete list of commands of running experiments can be found at commands/train_studentnet_resnet.sh and commands/train_studentnet_inception.sh.

MentorNet Framework

MentorNet is a general framework for curriculum learning, where various curriculums can be learned by the same MentorNet structure of different parameters.

It is flexible as we can switch curriculums by attaching different MentorNets without modifying the pipeline.

We train a few MentorNets listed below. We can think of a MentorNet as a hyper-parameter and will be tuned for different problems.

Curriculum Visualization Intuition Model Name
No curriculum image Assign uniform weight to every sample uniform. baseline_mentornet
Self-paced
(Kuma et al. 2010)
image Favor samples of smaller loss. self_paced_mentornet
SPCL linear
(Jiang et al. 2015)
image Discount the weight by loss linearly. spcl_linear_mentornet
Hard example mining
(Felzenszwalb et al., 2008)
image Favor samples of greater loss. hard_example_mining_mentornet
Focal loss
(Lin et al., 2017)
image Increase the weight by loss by the exponential CDF. focal_loss_mentornet
Predefined Mixture image Mixture of SPL and SPCL changing by epoch. mentornet_pd
MentorNet Data-driven image Learned on a small subset of the CIFAR data. mentornet_dd

Note there are many more curriculums can be trained by MentorNet, for example, prediction variance (Chang et al., 2017), implicit regularizer (Fan et al. 2017), self-paced with diversity (Jiang et al. 2014), sample re-weighting (Dehghani et al., 2018, Ren et al., 2018), etc.

Performance

The numbers are slightly different from the ones reported in the paper due to the re-implementation on the third party library.

CIFAR-10 ResNet

noise_fraction baseline self_paced focal_loss mentornet_pd mentornet_dd
0.2 0.796 0.822 0.797 0.910 0.914
0.4 0.568 0.802 0.634 0.776 0.887
0.8 0.238 0.297 0.25 0.283 0.463

CIFAR-100 ResNet

noise_fraction baseline self_paced focal_loss mentornet_pd mentornet_dd
0.2 0.624 0.652 0.613 0.733 0.726
0.4 0.448 0.509 0.467 0.567 0.675
0.8 0.084 0.089 0.079 0.193 0.301

CIFAR-10 Inception

noise_fraction baseline self_paced focal_loss mentornet_pd mentornet_dd
0.2 0.775 0.784 0.747 0.798 0.800
0.4 0.72 0.733 0.695 0.731 0.763
0.8 0.29 0.272 0.309 0.312 0.461

CIFAR-100 Inception

noise_fraction baseline self_paced focal_loss mentornet_pd mentornet_dd
0.2 0.42 0.408 0.391 0.451 0.466
0.4 0.346 0.32 0.313 0.386 0.411
0.8 0.108 0.091 0.107 0.125 0.203

Algorithm

We propose an algorithm to optimize the StudentNet model parameter w jointly with a

given MentorNet. Unlike the alternating minimization, it minimizes w (StudentNet parameter) and v (sample weight) stochastically over mini-batches.

The curriculum can change during training, and MentorNet is updated a few times in the algorithm.

Algorithm

To learn new curriculums (Step 6), see this page.

We found specific MentorNet architectures do not matter that much.

References

  • Bengio, Yoshua, et al. "Curriculum learning". In ICML, 2009.
  • Kumar M. Pawan, Packer Benjamin, and Koller Daphne "Self-paced learning for latent variable models". In NIPS, 2010.
  • Jiang, Lu et al. "Self-paced Learning with Diversity", In NIPS 2014
  • Jiang, Lu, et al. "Self-Paced Curriculum Learning." In AAAI. 2015.
  • Liang, Junwei et al. Learning to Detect Concepts from Webly-Labeled Video Data, In IJCAI 2016.
  • Lin, Tsung-Yi, et al. "Focal loss for dense object detection." In ICCV. 2017.
  • Fan, Yanbo, et al. "Self-Paced Learning: an Implicit Regularization Perspective." In AAAI 2017.
  • Felzenszwalb, Pedro, et al. "A discriminatively trained, multiscale, deformable part model." In CVPR 2008.
  • Dehghani, Mostafa, et al. "Fidelity-Weighted Learning." In ICLR 2018.
  • Ren, Mengye, et al. "Learning to reweight examples for robust deep learning." In ICML 2018.
  • Fan, Yang, et al. "Learning to Teach." In ICLR 2018.
  • Chang, Haw-Shiuan, et al. "Active Bias: Training More Accurate Neural Networks by Emphasizing High Variance Samples." In NIPS 2017.
Owner
Google
Google ❤️ Open Source
Google
Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

GANs for Biological Image Synthesis This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary m

Anton Osokin 95 Nov 25, 2022
Python implementation of a live deep learning based age/gender/expression recognizer

TUT live age estimator Python implementation of a live deep learning based age/gender/smile/celebrity twin recognizer. All components use convolutiona

Heikki Huttunen 80 Nov 21, 2022
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022
This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Mega-NeRF This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewe

cmusatyalab 260 Dec 28, 2022
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

29 Oct 01, 2022
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
Implementing a simplified copy of Shazam application from scratch using MinHashing and LSH.

Building Shazam from scratch In this repository we tried to implement a simplified copy of the Shazam application able to tell you the name of a song

Arturo Ghinassi 0 Nov 17, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
DA2Lite is an automated model compression toolkit for PyTorch.

DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub — it helps!! Frameworks & Librari

Sinhan Kang 7 Mar 22, 2022
Dcf-game-infrastructure-public - Contains all the components necessary to run a DC finals (attack-defense CTF) game from OOO

dcf-game-infrastructure All the components necessary to run a game of the OOO DC

Order of the Overflow 46 Sep 13, 2022
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
A highly efficient, fast, powerful and light-weight anime downloader and streamer for your favorite anime.

AnimDL - Download & Stream Your Favorite Anime AnimDL is an incredibly powerful tool for downloading and streaming anime. Core features Abuses the dev

KR 759 Jan 08, 2023
Quantum-enhanced transformer neural network

Example of a Quantum-enhanced transformer neural network Get the code: git clone https://github.com/rdisipio/qtransformer.git cd qtransformer Create

Riccardo Di Sipio 61 Nov 08, 2022
This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.

DBSegment This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1

Luxembourg Neuroimaging (Platform OpNeuroImg) 2 Oct 25, 2022
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 647 Jan 04, 2023
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
A Dataset of Python Challenges for AI Research

Python Programming Puzzles (P3) This repo contains a dataset of python programming puzzles which can be used to teach and evaluate an AI's programming

Microsoft 850 Dec 24, 2022