Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

Overview

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

This is the code for the paper:

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels
Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, Li Fei-Fei
Presented at ICML 2018

Please note that this is not an officially supported Google product.

If you find this code useful in your research then please cite

@inproceedings{jiang2018mentornet,
  title={MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels},
  author={Jiang, Lu and Zhou, Zhengyuan and Leung, Thomas and Li, Li-Jia and Fei-Fei, Li},
  booktitle={ICML},
  year={2018}
}

Introduction

We are interested in training a deep network using curriculum learning (Bengio et al., 2009), i.e. learning examples with focus. Each curriculum is implemented as a network (called MentorNet).

  • During training, MentorNet supervises the training of the base network (called StudentNet).
  • At the test time, StudentNet makes prediction alone without MentorNet.

Training Overview

Setups

All code was developed and tested on Nvidia V100/P100 (16GB) the following environment.

  • Ubuntu 18.04
  • Python 2.7.15
  • TensorFlow 1.8.0
  • numpy 1.13.3
  • imageio 2.3.0

Download Cloud SDK to get data and models. Next we need to download the dataset and pre-trained MentorNet models. Put them into the same directory as the code directory.

gsutil -m cp -r gs://mentornet_project/data .
gsutil -m cp -r gs://mentornet_project/mentornet_models .

Alternatively, you may download the zip files: data and models.

Running MentorNet on CIFAR

export PYTHONPATH="$PYTHONPATH:$PWD/code/"

python code/cifar_train_mentornet.py \
  --dataset_name=cifar10   \
  --trained_mentornet_dir=mentornet_models/models/mentornet_pd1_g_1/mentornet_pd \
  --loss_p_precentile=0.75  \
  --nofixed_epoch_after_burn_in  \
  --burn_in_epoch=0  \
  --example_dropout_rates="0.5,17,0.05,83" \
  --data_dir=data/cifar10/0.2 \
  --train_log_dir=cifar_models/cifar10/resnet/0.2/mentornet_pd1_g_1/train \
  --studentnet=resnet101 \
  --max_number_of_steps=39000

A full list of commands can be found in this file. The training script has a number of command-line flags that you can use to configure the model architecture, hyperparameters, and input / output settings:

  • --trained_mentornet_dir: Directory where to find the trained MentorNet model, created by mentornet_learning/train.py.
  • --loss_p_percentile: p-percentile used to compute the loss moving average. Default is 0.7.
  • --burn_in_epoch: Number of first epochs to perform burn-in. In the burn-in period, every sample has a fixed 1.0 weight. Default is 0.
  • --fixed_epoch_after_burn_in: Whether to use the fixed epoch as the MentorNet input feature after the burn-in period. Set True for MentorNet DD. Default is False.
  • --loss_moving_average_decay: Decay factor used in moving average. Default is 0.5.
  • --example_dropout_rates: Comma-separated list indicating the example drop-out rate for the total of 100 epochs. The format is [dropout rate, epoch_num]+, the piecewise drop-out rate from boundaries and values. The sum of epoch_num is 100. Drop-out means the probability of setting sample weights to zeros proposed (Liang et al., 2016). Default is 0.5, 17, 0.05, 78, 1.0, 5.

To evaluate a model, run the evaluation job in parallel with the training job (on a different GPU).

python cifar/cifar_eval.py \
 --dataset_name=cifar10 \
 --data_dir=cifar/data/cifar10/val/ \
 --checkpoint_dir=cifar_models/cifar10/resnet/0.2/mentornet_pd1_g_1/train \
 --eval_dir=cifar_models/cifar10/resnet/0.2/mentornet_pd1_g_1//eval_val \
 --studentnet=resnet101 \
 --device_id=1

A complete list of commands of running experiments can be found at commands/train_studentnet_resnet.sh and commands/train_studentnet_inception.sh.

MentorNet Framework

MentorNet is a general framework for curriculum learning, where various curriculums can be learned by the same MentorNet structure of different parameters.

It is flexible as we can switch curriculums by attaching different MentorNets without modifying the pipeline.

We train a few MentorNets listed below. We can think of a MentorNet as a hyper-parameter and will be tuned for different problems.

Curriculum Visualization Intuition Model Name
No curriculum image Assign uniform weight to every sample uniform. baseline_mentornet
Self-paced
(Kuma et al. 2010)
image Favor samples of smaller loss. self_paced_mentornet
SPCL linear
(Jiang et al. 2015)
image Discount the weight by loss linearly. spcl_linear_mentornet
Hard example mining
(Felzenszwalb et al., 2008)
image Favor samples of greater loss. hard_example_mining_mentornet
Focal loss
(Lin et al., 2017)
image Increase the weight by loss by the exponential CDF. focal_loss_mentornet
Predefined Mixture image Mixture of SPL and SPCL changing by epoch. mentornet_pd
MentorNet Data-driven image Learned on a small subset of the CIFAR data. mentornet_dd

Note there are many more curriculums can be trained by MentorNet, for example, prediction variance (Chang et al., 2017), implicit regularizer (Fan et al. 2017), self-paced with diversity (Jiang et al. 2014), sample re-weighting (Dehghani et al., 2018, Ren et al., 2018), etc.

Performance

The numbers are slightly different from the ones reported in the paper due to the re-implementation on the third party library.

CIFAR-10 ResNet

noise_fraction baseline self_paced focal_loss mentornet_pd mentornet_dd
0.2 0.796 0.822 0.797 0.910 0.914
0.4 0.568 0.802 0.634 0.776 0.887
0.8 0.238 0.297 0.25 0.283 0.463

CIFAR-100 ResNet

noise_fraction baseline self_paced focal_loss mentornet_pd mentornet_dd
0.2 0.624 0.652 0.613 0.733 0.726
0.4 0.448 0.509 0.467 0.567 0.675
0.8 0.084 0.089 0.079 0.193 0.301

CIFAR-10 Inception

noise_fraction baseline self_paced focal_loss mentornet_pd mentornet_dd
0.2 0.775 0.784 0.747 0.798 0.800
0.4 0.72 0.733 0.695 0.731 0.763
0.8 0.29 0.272 0.309 0.312 0.461

CIFAR-100 Inception

noise_fraction baseline self_paced focal_loss mentornet_pd mentornet_dd
0.2 0.42 0.408 0.391 0.451 0.466
0.4 0.346 0.32 0.313 0.386 0.411
0.8 0.108 0.091 0.107 0.125 0.203

Algorithm

We propose an algorithm to optimize the StudentNet model parameter w jointly with a

given MentorNet. Unlike the alternating minimization, it minimizes w (StudentNet parameter) and v (sample weight) stochastically over mini-batches.

The curriculum can change during training, and MentorNet is updated a few times in the algorithm.

Algorithm

To learn new curriculums (Step 6), see this page.

We found specific MentorNet architectures do not matter that much.

References

  • Bengio, Yoshua, et al. "Curriculum learning". In ICML, 2009.
  • Kumar M. Pawan, Packer Benjamin, and Koller Daphne "Self-paced learning for latent variable models". In NIPS, 2010.
  • Jiang, Lu et al. "Self-paced Learning with Diversity", In NIPS 2014
  • Jiang, Lu, et al. "Self-Paced Curriculum Learning." In AAAI. 2015.
  • Liang, Junwei et al. Learning to Detect Concepts from Webly-Labeled Video Data, In IJCAI 2016.
  • Lin, Tsung-Yi, et al. "Focal loss for dense object detection." In ICCV. 2017.
  • Fan, Yanbo, et al. "Self-Paced Learning: an Implicit Regularization Perspective." In AAAI 2017.
  • Felzenszwalb, Pedro, et al. "A discriminatively trained, multiscale, deformable part model." In CVPR 2008.
  • Dehghani, Mostafa, et al. "Fidelity-Weighted Learning." In ICLR 2018.
  • Ren, Mengye, et al. "Learning to reweight examples for robust deep learning." In ICML 2018.
  • Fan, Yang, et al. "Learning to Teach." In ICLR 2018.
  • Chang, Haw-Shiuan, et al. "Active Bias: Training More Accurate Neural Networks by Emphasizing High Variance Samples." In NIPS 2017.
Owner
Google
Google ❤️ Open Source
Google
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021
Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)"

Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)" which introduces a new class of deep generative models that gene

Guan-Horng Liu 43 Jan 03, 2023
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
Implementation of Squeezenet in pytorch, pretrained models on Cifar 10 data to come

Pytorch Squeeznet Pytorch implementation of Squeezenet model as described in https://arxiv.org/abs/1602.07360 on cifar-10 Data. The definition of Sque

gaurav pathak 86 Oct 28, 2022
Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research

Megaverse Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research. The efficient design of the engine enables ph

Aleksei Petrenko 191 Dec 23, 2022
PyTorch module to use OpenFace's nn4.small2.v1.t7 model

OpenFace for Pytorch Disclaimer: This codes require the input face-images that are aligned and cropped in the same way of the original OpenFace. * I m

Pete Tae-hoon Kim 176 Dec 12, 2022
Contextual Attention Network: Transformer Meets U-Net

Contextual Attention Network: Transformer Meets U-Net Contexual attention network for medical image segmentation with state of the art results on skin

Reza Azad 67 Nov 28, 2022
Adaptive, interpretable wavelets across domains (NeurIPS 2021)

Adaptive wavelets Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and mo

Yu Group 50 Dec 16, 2022
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
Official code for 'Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning' [ICCV 2021]

RTFM This repo contains the Pytorch implementation of our paper: Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Lear

Yu Tian 242 Jan 08, 2023
Semi-SDP Semi-supervised parser for semantic dependency parsing.

Semi-SDP Semi-supervised parser for semantic dependency parsing. This repo contains the code used for the semi-supervised semantic dependency parser i

12 Sep 17, 2021
SmoothGrad implementation in PyTorch

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
An implementation of the AdaOPS (Adaptive Online Packing-based Search), which is an online POMDP Solver used to solve problems defined with the POMDPs.jl generative interface.

AdaOPS An implementation of the AdaOPS (Adaptive Online Packing-guided Search), which is an online POMDP Solver used to solve problems defined with th

9 Oct 05, 2022
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

47 Oct 11, 2022
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

44 Jun 27, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

28 Dec 02, 2022
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Martin Knoche 10 Dec 12, 2022