Geometric Sensitivity Decomposition

Overview

Geometric Sensitivity Decomposition

License: MIT

Diagram of Contribution

  1. This repo is the official implementation of A Geometric Perspective towards Neural Calibration via Sensitivity Decomposition (tian21gsd). The pape is accpted at NeurIPS 2021. as a spotlight paper.
  2. We reimplememented Exploring Covariate and Concept Shift for Out-of-Distribution Detection (tian21explore) and include it in the code base as well. The paper is accepted at NeurIPS 2021 workshop on Distribution Shift.
  3. For a brief introduction to these two papers, please visit the project page.

Create conda environment

conda env create -f requirements.yaml
conda activate gsd

Training

  1. Dataset will be automatically downloaded in the ./datasets directory the first time.
  2. We provide support for CIFAR10 and CIFAR100. Please change name in the configuration file accordingly (default: CIFAR10).
data: 
    name: cifar10 
  1. Three sample training configuration files are provided.
    • To train a vanilla model.

      python train.py --config ./configs/train/resnet_vanilla.yaml   
      
    • To train the GSD model proposed in tian21gsd.

      python train.py --config ./configs/train/resnet_gsd.yaml   
      
    • To train the Geometric ODIN model proposed in tian21exploring.

      python train.py --config ./configs/train/resnet_geo_odin.yaml   
      

Evaluation

1, We provide support for evaluation on CIFAR10, CIFAR100, CIFAR10C, CIFAR100C and SVHN. We consider both out-of-distribution (OOD) detection and confidence calibration. Models trained on different datasets will use different evaluation datasets.

OOD detection Calibration
Training Near OOD Far OOD Special ID OOD
CIFAR10 CIFAR10C CIFAR100 SVHN CIFAR100 Splits CIFAR10 CIFAR10C
CIFAR100 CIFAR100C CIFAR10 SVHN CIFAR100 CIFAR100C
  1. The eval.py file optionally calibrates a model. It 1) evaluates calibration performance and 2) saves several scores for OOD detection evaluation later.

    • Run the following commend to evaluate on a test set.

      python eval.py --config ./configs/eval/resnet_{model}.yaml 
      
    • To specify a calibration method, select the calibration attribute out of supported ones (use 'none' to avoid calibration). Note that a vanilla model can be calibrated using three supported methods, temperature scaling, matrix scaling and dirichlet scaling. GSD and Geometric ODIN use the alpha-beta scaling.

          testing: 
              calibration: temperature # ['temperature','dirichlet','matrix','alpha-beta','none'] 
    • To select a testing dataset, modify the dataset attribute. Note that the calibration dataset (specified under data: name) can be different than the testing dataset.

          testing: 
              dataset: cifar10 # cifar10, cifar100, cifar100c, cifar10c, svhn testing dataset
  2. Calibration benchmark

    • Results will be saved under ./runs/test/{data_name}/{arch}/{calibration}/{test_dataset}_calibration.txt.
    • We use Expected Calibration Error (ECE), Negative Log Likelihood and Brier score for calibration evaluation.
    • We recommend using a 5-fold evalution for in-distribution (ID) calibration benchmark because CIFAR10/100 does not have a val/test split. Note that evalx.py does not save OOD scores.
      python evalx.py --config ./configs/train/resnet_{model}.yaml 
      
    • (Optional) To use the proposed exponential mapping (tian21gsd) for calibration, set the attribute exponential_map to 0.1.
  3. Out-of-Distribution (OOD) benchmark

    • OOD evaluation needs to run eval.py two times to extract OOD scores from both the ID and OOD datasets.
    • Results will be saved under ./runs/test/{data_name}/{arch}/{calibration}/{test_dataset}_scores.csv. For example, to evaluate OOD detection performance of a vanilla model (ID:CIFAR10 vs. OOD:CIFAR10C), you need to run eval.py twice on CIFAR10 and CIFAR10C as the testing dataset. Upon completion, you will see two files, cifar10_scores.csv and cifar10c_scores.csv in the same folder.
    • After the evaluation results are saved, to calculate OOD detection performance, run calculate_ood.py and specify the conditions of the model: training set, testing set, model name and calibration method. The flags will help the function locate csv files saved in the previous step.
      python utils/calculate_ood.py --train cifar10 --test cifar10c --model resnet_vanilla --calibration none
      
    • We use AUROC and [email protected] as evaluation metrics.

Performance

  1. confidence calibration Performance of models trained on CIFAR10
accuracy ECE Nll
CIFAR10 CIFAR10C CIFAR10 CIFAR10C CIFAR10 CIFAR10C
Vanilla 96.25 69.43 0.0151 0.1433 0.1529 1.0885
Temperature Scaling 96.02 71.54 0.0028 0.0995 0.1352 0.8699
Dirichlet Scaling 95.93 71.15 0.0049 0.1135 0.1305 0.9527
GSD (tian21gsd) 96.23 71.7 0.0057 0.0439 0.1431 0.7921
Geometric ODIN (tian21explore) 95.92 70.18 0.0016 0.0454 0.1309 0.8138
  1. Out-of-Distribution Detection Performance (AUROC) of models trained on CIFAR10
AUROC score function CIFAR100 CIFAR10C SVHN
Vanilla MSP 88.33 71.49 91.88
Energy 88.11 71.94 92.88
GSD (tian21gsd) U 92.68 77.68 99.29
Geometric ODIN (tian21explore) U 92.53 78.77 99.60

Additional Resources

  1. Pretrained models
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
Copy Paste positive polyp using poisson image blending for medical image segmentation

Copy Paste positive polyp using poisson image blending for medical image segmentation According poisson image blending I've completely used it for bio

Phạm Vũ Hùng 2 Oct 19, 2021
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
Course on computational design, non-linear optimization, and dynamics of soft systems at UIUC.

Computational Design and Dynamics of Soft Systems · This is a repository that contains the source code for generating the lecture notes, handouts, exe

Tejaswin Parthasarathy 4 Jul 21, 2022
Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

GUI for iVOS(interactive VOS) and GIS (Guided iVOS) GUI Implementation of CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliabili

Yuk Heo 13 Dec 09, 2022
Implementation of Artificial Neural Network Algorithm

Artificial Neural Network This repository contain implementation of Artificial Neural Network Algorithm in several programming languanges and framewor

Resha Dwika Hefni Al-Fahsi 1 Sep 14, 2022
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
Reporting and Visualization for Hazardous Events

Reporting and Visualization for Hazardous Events

Jv Kyle Eclarin 2 Oct 03, 2021
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
An investigation project for SISR.

SISR-Survey An investigation project for SISR. This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learnin

Juncheng Li 79 Oct 20, 2022
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
A code implementation of AC-GC: Activation Compression with Guaranteed Convergence, in NeurIPS 2021.

Code For AC-GC: Lossy Activation Compression with Guaranteed Convergence This code is intended to be used as a supplemental material for submission to

Dave Evans 2 Nov 01, 2022
[CVPR 2020] Transform and Tell: Entity-Aware News Image Captioning

Transform and Tell: Entity-Aware News Image Captioning This repository contains the code to reproduce the results in our CVPR 2020 paper Transform and

Alasdair Tran 85 Dec 13, 2022
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

19 Sep 29, 2022
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting

Autoformer (NeurIPS 2021) Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting Time series forecasting is a c

THUML @ Tsinghua University 847 Jan 08, 2023
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
Hierarchical Time Series Forecasting with a familiar API

scikit-hts Hierarchical Time Series with a familiar API. This is the result from not having found any good implementations of HTS on-line, and my work

Carlo Mazzaferro 204 Dec 17, 2022