An investigation project for SISR.

Overview

SISR-Survey

An investigation project for SISR.

This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learning-based Single-Image Super-Resolution".

Purpose

Due to the pages and time limitation, it is impossible to introduce all SISR methods in the paper, and it is impossible to update the latest methods in time. Therefore, we use this project to assist our survey to cover more methods. This will be a continuously updated project! We hope it can help more researchers and promote the development of image super-resolution. Welcome more researchers to jointly maintain this project!

Abstract

Single-image super-resolution (SISR) is an important task in image processing, which aims to enhance the resolution of imaging systems. Recently, SISR has made a huge leap and has achieved promising results with the help of deep learning (DL). In this survey, we give an overview of DL-based SISR methods and group them according to their targets, such as reconstruction efficiency, reconstruction accuracy, and perceptual accuracy. Specifically, we first introduce the problem definition, research background, and the significance of SISR. Secondly, we introduce some related works, including benchmark datasets, upsampling methods, optimization objectives, and image quality assessment methods. Thirdly, we provide a detailed investigation of SISR and give some domain-specific applications of it. Fourthly, we present the reconstruction results of some classic SISR methods to intuitively know their performance. Finally, we discuss some issues that still exist in SISR and summarize some new trends and future directions. This is an exhaustive survey of SISR, which can help researchers better understand SISR and inspire more exciting research in this field.

Taxonomy

Datasets

Benchmarks datasets for single-image super-resolution (SISR).

SINGLE-IMAGE SUPER-RESOLUTION

Reconstruction Efficiency Methods

Perceptual Quality Methods

Perceptual Quality Methods

Further Improvement Methods

DOMAIN-SPECIFIC APPLICATIONS

Real-World SISR

Remote Sensing Image Super-Resolution

Hyperspectral Image Super-Resolution

In contrast to human eyes that can only be exposed to visible light, hyperspectral imaging is a technique for collecting and processing information across the entire range of electromagnetic spectrum. The hyperspectral system is often compromised due to the limitations of the amount of the incident energy, hence there is a trade-off between the spatial and spectral resolution. Therefore, hyperspectral image super-resolution is studied to solve this problem.

[1] Hyperspectral Image Spatial Super-Resolution via 3D Full Convolutional Neural Network

[2] Single Hyperspectral Image Super-Resolution with Grouped Deep Recursive Residual Network

[3] Hyperspectral Image Super-Resolution with Optimized RGB Guidance

[4] Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral Imagery

[5] A Spectral Grouping and Attention-Driven Residual Dense Network for Hyperspectral Image Super-Resolution

Light Field Image Super-Resolution

Light field (LF) camera is a camera that can capture information about the light field emanating from a scene and can provide multiple views of a scene. Recently, the LF image is becoming more and more important since it can be used for post-capture refocusing, depth sensing, and de-occlusion. However, LF cameras are faced with a trade-off between spatial and angular resolution. In order to solve this issue, SR technology is introduced to achieve a good balance between spatial and angular resolution.

[1] Light-field Image Super-Resolution Using Convolutional Neural Network

[2] LFNet: A novel Bidirectional Recurrent Convolutional Neural Network for Light-field Image Super-Resolution

[3] Spatial-Angular Interaction for Light Field Image Super-Resolution

[4] Light Field Image Super-Resolution Using Deformable Convolution

Face Image Super-Resolution

Face image super-resolution is the most famous field in which apply SR technology to domain-specific images. Due to the potential applications in facial recognition systems such as security and surveillance, face image super-resolution has become an active area of research.

[1] Learning Face Hallucination in the Wild

[2] Deep Cascaded Bi-Network for Face Hallucination

[3] Hallucinating Very Low-Resolution Unaligned and Noisy Face Images by Transformative Discriminative Autoencoders

[4] Super-Identity Convolutional Neural Network for Face Hallucination

[5] Exemplar Guided Face Image Super-Resolution without Facial Landmarks

[6] Robust Facial Image Super-Resolution by Kernel Locality-Constrained Coupled-Layer Regression

Medical Image Super-Resolution

Medical imaging methods such as computational tomography (CT) and magnetic resonance imaging (MRI) are essential to clinical diagnoses and surgery planning. Hence, high-resolution medical images are desirable to provide necessary visual information of the human body. Recently, many methods have been proposed for medical image super-resolution

[1] Efficient and Accurate MRI Super-Resolution Using A Generative Adversarial Network and 3D Multi-Level Densely Connected Network

[2] CT-Image of Rock Samples Super Resolution Using 3D Convolutional Neural Network

[3] Channel Splitting Network for Single MR Image Super-Resolution

[4] SAINT: Spatially Aware Interpolation Network for Medical Slice Synthesis

Depth Map Super-Resolution

The depth map is an image or image channel that contains information relating to the distance of the surfaces of scene objects from a viewpoint. The use of depth information of a scene is essential in many applications such as autonomous navigation, 3D reconstruction, human-computer interaction, and virtual reality. However, depth sensors, such as Microsoft Kinect and Lidar, can only provide depth maps of limited resolutions. Hence, depth map super-resolution has drawn more and more attention recently.

[1] Deep Depth Super-Resolution: Learning Depth Super-Resolution Using Deep Convolutional Neural Network

[2] Atgv-net: Accurate Depth Super-Resolution

[3] Depth Map Super-Resolution by Deep Multi-Scale Guidance

[4] Deeply Supervised Depth Map Super-Resolution as Novel View Synthesis

[5] Perceptual Deep Depth Super-Resolution

[6] Channel Attention based Iterative Residual Kearning for Depth Map Super-Resolution

Stereo Image Super-Resolution

The dual camera has been widely used to estimate depth information. Meanwhile, stereo imaging can also be applied in image restoration. In the stereo image pair, we have two images with disparity much larger than one pixel. Therefore, full use of these two images can enhance the spatial resolution.

[1] Enhancing the Spatial Resolution of Stereo Images Using A Parallax Prior

[2] Learning Parallax Attention for Stereo Image Super-Resolution

[3] Parallax Attention for Unsupervised Stereo Correspondence Learning

[4] Flickr1024: A Large-Scale Dataset for Stereo Image Super-Resolution

[5] A Stereo Attention Module for Stereo Image Super-Resolution

[6] Symmetric Parallax Attention for Stereo Image Super-Resolution

[7] Deep Bilateral Learning for Stereo Image Super-Resolution

[8] Stereoscopic Image Super-Resolution with Stereo Consistent Feature

[9] Feedback Network for Mutually Boosted Stereo Image Super-Resolution and Disparity Estimation

RECONSTRUCTION RESULTS

PSNR/SSIM comparison of lightweight SISR models (the number of model parameters less than 1000K) on Set5 (x4), Set14 (x4), and Urban100 (x4). Meanwhile, the training datasets and the number of model parameters are provided. Sort by PSNR of Set5 in ascending order. Best results are highlighted.

PSNR/SSIM comparison of large SISR models (the number of model parameters more than 1M, M=million) on Set5 (x4), Set14 (x4), and Urban100 (x4). Meanwhile, the training datasets and the number of model parameters are provided. Sort by PSNR of Set5 in ascending order. Best results are highlighted.

Owner
Juncheng Li
Juncheng Li
Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI

EmotionUI Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI. demo screenshot (with RealSense) required packages Python = 3.6 num

Yang Jiao 2 Dec 23, 2021
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"

DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im

Yu Wang (Jack) 18 Oct 12, 2022
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
Autonomous racing with the Anki Overdrive

Anki Autonomous Racing Autonomous racing with the Anki Overdrive. Using the Overdrive-Python API (https://github.com/xerodotc/overdrive-python) develo

3 Dec 11, 2022
Hyper-parameter optimization for sklearn

hyperopt-sklearn Hyperopt-sklearn is Hyperopt-based model selection among machine learning algorithms in scikit-learn. See how to use hyperopt-sklearn

1.4k Jan 01, 2023
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
This repository lets you interact with Lean through a REPL.

lean-gym This repository lets you interact with Lean through a REPL. See Formal Mathematics Statement Curriculum Learning for a presentation of lean-g

OpenAI 87 Dec 28, 2022
In this project we predict the forest cover type using the cartographic variables in the training/test datasets.

Kaggle Competition: Forest Cover Type Prediction In this project we predict the forest cover type (the predominant kind of tree cover) using the carto

Marianne Joy Leano 1 Mar 15, 2022
Neural-net-from-scratch - A simple Neural Network from scratch in Python using the Pymathrix library

A Simple Neural Network from scratch A Simple Neural Network from scratch in Pyt

Youssef Chafiqui 2 Jan 07, 2022
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 125 Dec 31, 2022
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022
Make your master artistic punk avatar through machine learning world famous paintings.

Master-art-punk Make your master artistic punk avatar through machine learning world famous paintings. 通过机器学习世界名画制作属于你的大师级艺术朋克头像 Nowadays, NFT is beco

Philipjhc 53 Dec 27, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
YolactEdge: Real-time Instance Segmentation on the Edge

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7

Haotian Liu 1.1k Jan 06, 2023
Breast Cancer Detection 🔬 ITI "AI_Pro" Graduation Project

BreastCancerDetection - This program is designed to predict two severity of abnormalities associated with breast cancer cells: benign and malignant. Mammograms from MIAS is preprocessed and features

6 Nov 29, 2022