Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Overview

Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

This repository contains the models that I implemented for this competition as a part of our team.

First level models

Heartkilla (me)

  • Models: RoBERTa-base-squad2, RoBERTa-large-squad2, DistilRoBERTa-base, XLNet-base-cased
  • Concat Avg / Max of last n-1 layers (without embedding layer) and feed into Linear head
  • Multi Sample Dropout, AdamW, linear warmup schedule
  • I used Colab Pro for training.
  • Custom loss: Jaccard-based Soft Labels Since Cross Entropy doesn’t optimize Jaccard directly, I tried different loss functions to penalize far predictions more than close ones. SoftIOU used in segmentation didn’t help so I came up with a custom loss that modifies usual label smoothing by computing Jaccard on the token level. I then use this new target labels and optimize KL divergence. Alpha here is a parameter to balance between usual CE and Jaccard-based labeling. I’ve noticed that probabilities in this case change pretty steeply so I decided to smooth it a bit by adding a square term. This worked best for 3 of my models except DistilRoBERTa which used the previous without-square version. Eventually this loss boosted all of my models by around 0.003. This is a plot of target probabilities for 30 tokens long sentence with start_idx=5 and end_idx=25, alpha=0.3.

I claim that since the probabilities from my models are quite decorrelated with regular CE / SmoothedCE ones, they provided necessary diversity and were crucial to each of our 2nd level models.

Hikkiiii

  • max_len=120, no post-processing
  • Append sentiment token to the end of the text
  • Models: 5fold-roberta-base-squad2(0.712CV), 5fold-roberta-large-squad2(0.714CV)
  • Last 3 hidden states + CNN*1 + linear
  • CrossEntropyLoss, AdamW
  • epoch=5, lr=3e-5, weight_decay=0.001, no scheduler, warmup=0, bsz=32-per-device
  • V100*2, apex(O1) for fast training
  • Traverse the top 20 of start_index and end_index, ensure start_index < end_index

Theo

I took a bet when I joined @cl2ev1 on the competition, which was that working with Bert models (although they perform worse than Roberta) will help in the long run. It did pay off, as our 2nd level models reached 0.735 public using 2 Bert (base, wwm) and 3 Roberta (base, large, distil). I then trained an Albert-large and a Distilbert for diversity.

  • bert-base-uncased (CV 0.710), bert-large-uncased-wwm (CV 0.710), distilbert (CV 0.705), albert-large-v2 (CV 0.711)
  • Squad pretrained weights
  • Multi Sample Dropout on the concatenation of the last n hidden states
  • Simple smoothed categorical cross-entropy on the start and end probabilities
  • I use the auxiliary sentiment from the original dataset as an additional input for training. [CLS] [sentiment] [aux sentiment] [SEP] ... During inference, it is set to neutral
  • 2 epochs, lr = 7e-5 except for distilbert (3 epochs, lr = 5e-5)
  • Sequence bucketing, batch size is the highest power of 2 that could fit on my 2080Ti (128 (distil) / 64 (bert-base) / 32 (albert) / 16 (wwm)) with max_len = 70
  • Bert models have their learning rate decayed closer to the input, and use a higher learning rate for the head (1e-4)
  • Sequence bucketting for faster training

Cl_ev

This competition has a lengthy list of things that did not work, here are things that worked :)

  • Models: roberta-base (CV 0.715), Bertweet (thanks to all that shared it - it helped diversity)
  • MSD, applying to hidden outputs
  • (roberta) pretrained on squad
  • (roberta) custom merges.txt (helps with cases when tokenization would not allow to predict correct start and finish). On it’s own adds about 0.003 - 0.0035 to CV.
  • Discriminative learning
  • Smoothed CE (in some cases weighted CE performed ok, but was dropped)

Second level models

Architectures

Theo came up with 3 different Char-NN architectures that use character-level probabilities from transformers as input. You can see how we utilize them in this notebook.

  • RNN

  • CNN

  • WaveNet (yes, we took that one from the Liverpool competition)

Stacking ensemble

As Theo mentioned here, we feed character level probabilities from transformers into Char-NNs.

However, we decided not to just do it end-to-end (i.e. training 2nd levels on the training data probas), but to use OOF predictions and perform good old stacking. As our team name suggests (one of the Transformers movies) we built quite an army of transformers. This is the stacking pipeline for our 2 submissions. Note that we used different input combinations to 2nd level models for diversity. Inference is also available in this and this kernels.

Pseudo-labeling

We used one of our CV 0.7354 blends to pseudo-label the public test data. We followed the approach from here and created “leakless” pseudo-labels. We then used a threshold of 0.35 to cut off low-confidence samples. The confidence score was determined like: (start_probas.max() + end_probas.max()) / 2. This gave a pretty robust boost of 0.001-0.002 for many models. We’re not sure if it really helps the final score overall since we only did 9 submissions with the full inference.

Other details

Adam optimizer, linear decay schedule with no warmup, SmoothedCELoss such as in level 1 models, Multi Sample Dropout. Some of the models also used Stochastic Weighted Average.

Extra stuff

We did predictions on neutral texts as well, our models were slightly better than doing selected_text = text. However, we do selected_text = text when start_idx > end_idx.

Once the pattern in the labels is detected, it is possible to clean the labels to improve level 1 models performance. Since we found the pattern a bit too late, we decided to stick with the ensembles we already built instead of retraining everything from scratch.

Thanks for reading and happy kaggling!

[Update]

I gave a speech about our solution at the ODS Paris meetup: YouTube link

The presentation: SlideShare link

Owner
Artsem Zhyvalkouski
Data Scientist @ MC Digital / Kaggle Master
Artsem Zhyvalkouski
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Facebook Research 29 Dec 02, 2022
Pragmatic AI Labs 421 Dec 31, 2022
The code from the Machine Learning Bookcamp book and a free course based on the book

The code from the Machine Learning Bookcamp book and a free course based on the book

Alexey Grigorev 5.5k Jan 09, 2023
Iterative stochastic gradient descent (SGD) linear regressor with regularization

SGD-Linear-Regressor Iterative stochastic gradient descent (SGD) linear regressor with regularization Dataset: Kaggle “Graduate Admission 2” https://w

Zechen Ma 1 Oct 29, 2021
XAI - An eXplainability toolbox for machine learning

XAI - An eXplainability toolbox for machine learning XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contai

The Institute for Ethical Machine Learning 875 Dec 27, 2022
This handbook accompanies the course: Machine Learning with Hung-Yi Lee

This handbook accompanies the course: Machine Learning with Hung-Yi Lee

RenChu Wang 472 Dec 31, 2022
ThunderSVM: A Fast SVM Library on GPUs and CPUs

What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss

Xtra Computing Group 1.4k Dec 22, 2022
Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining

**Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining.** S

Sebastian Raschka 4k Dec 30, 2022
Python package for causal inference using Bayesian structural time-series models.

Python Causal Impact Causal inference using Bayesian structural time-series models. This package aims at defining a python equivalent of the R CausalI

Thomas Cassou 219 Dec 11, 2022
XManager: A framework for managing machine learning experiments 🧑‍🔬

XManager is a platform for packaging, running and keeping track of machine learning experiments. It currently enables one to launch experiments locally or on Google Cloud Platform (GCP). Interaction

DeepMind 620 Dec 27, 2022
Management of exclusive GPU access for distributed machine learning workloads

TensorHive is an open source tool for managing computing resources used by multiple users across distributed hosts. It focuses on granting

Paweł Rościszewski 131 Dec 12, 2022
Python package for stacking (machine learning technique)

vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa

Igor Ivanov 671 Dec 25, 2022
Free MLOps course from DataTalks.Club

MLOps Zoomcamp Our MLOps Zoomcamp course Sign up here: https://airtable.com/shrCb8y6eTbPKwSTL (it's not automated, you will not receive an email immed

DataTalksClub 4.6k Dec 31, 2022
Spark development environment for k8s

Local Spark Dev Env with Docker Development environment for k8s. Using the spark-operator image to ensure it will be the same environment. Start conta

Otacilio Filho 18 Jan 04, 2022
Real-time stream processing for python

Streamz Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelin

Python Streamz 1.1k Dec 28, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Jan 06, 2023
Exemplary lightweight and ready-to-deploy machine learning project

Exemplary lightweight and ready-to-deploy machine learning project

snapADDY GmbH 6 Dec 20, 2022
Python Research Framework

Python Research Framework

EleutherAI 106 Dec 13, 2022
Class-imbalanced / Long-tailed ensemble learning in Python. Modular, flexible, and extensible

IMBENS: Class-imbalanced Ensemble Learning in Python Language: English | Chinese/中文 Links: Documentation | Gallery | PyPI | Changelog | Source | Downl

Zhining Liu 176 Jan 04, 2023