MLFlow in a Dockercontainer based on Azurite and Postgres

Overview

mlflow-azurite-postgres docker

This is a MLFLow image which works with a postgres DB and a local Azure Blob Storage Instance (Azurite).

This image is designed to track local created Machine Learning Models with MLFlow on your own machine.

How to install and set it up

Download or copy the Repos to your computer.

Go to your folder and run


docker-compose up --build

Clean Up

If you need to remove all old work like blob storage data and MLFlow metadata (yes, pickle files and so on) from the PostgreSQL DB, you can use the following. Please go to your folder where your docker-compose file is and run

docker-compose down -v

It will be neccessary to push your model to this docker compose system.

Linux


export AZURE_STORAGE_CONNECTION_STRING="DefaultEndpointsProtocol=http;AccountName=devstoreaccount1;AccountKey=Eby8vdM02xNOcqFlqUwJPLlmEtlCDXJ1OUzFT50uSRZ6IFsuFq2UVErCz4I6tq/K1SZFPTOtr/KBHBeksoGMGw==;BlobEndpoint=http://localhost:10000/devstoreaccount1;QueueEndpoint=http://localhost:10001/devstoreaccount1"

export MLFLOW_TRACKING_URI="http://localhost:5000"

Windows

set AZURE_STORAGE_CONNECTION_STRING="DefaultEndpointsProtocol=http;AccountName=devstoreaccount1;AccountKey=Eby8vdM02xNOcqFlqUwJPLlmEtlCDXJ1OUzFT50uSRZ6IFsuFq2UVErCz4I6tq/K1SZFPTOtr/KBHBeksoGMGw==;BlobEndpoint=http://localhost:10000/devstoreaccount1;QueueEndpoint=http://localhost:10001/devstoreaccount1"


set MLFLOW_TRACKING_URI=http://localhost:5000

It is easyier to keep these things in an .env file that VS Code can use.

Run a model training and store the artifacts

Go to your project folder set the variables like describted abouve for your system and run in your cmd shell (not python shell or powershell) while you have your .venv activated

(.venv) ~/mlflow/get_model_from_mlflow/Fast_Check_of_Registed_Models.py


A successful trainings run with storage can look like this when printing the model id. This id you can find in the mlflow tracking server as well.

How to get used while MLFlow is in a docker on your machine

You can access MLFlow (Docker) via your webbrowser and localhost:5000 as web adress.

Trouble shooting

Known Problems and Solutions

It can happen that the docker is created correctly but you cannot track your artifacts. One solution that worked was to rename the storage container e.g. azurite to blobstorage or postgres_db to postgres. Make sure you rename all these things. It is strongly depending on your docker version if this works or not. It was no error message available.

Certain packages cause problems in higher versions. Therefore mlflow was set to 1.14.1 and azure-blob-storage to 12.7.1. Higher versions of azure-blob-storage were not running correctly but without any error message. Keep track of your versions if you need or like to use more actuall versions.

Sometimes the storage of artifacts did not work while a problem was in the repo of the model while mlflow docker was working fine.

Adaptive: parallel active learning of mathematical functions

adaptive Adaptive: parallel active learning of mathematical functions. adaptive is an open-source Python library designed to make adaptive parallel fu

741 Dec 27, 2022
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your

BDFD 6 Nov 05, 2022
TIANCHI Purchase Redemption Forecast Challenge

TIANCHI Purchase Redemption Forecast Challenge

Haorui HE 4 Aug 26, 2022
ML-powered Loan-Marketer Customer Filtering Engine

In Loan-Marketing business employees are required to call the user's to buy loans of several fields and in several magnitudes. If employees are calling everybody in the network it is also very length

Sagnik Roy 13 Jul 02, 2022
Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application

Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application (with docker-compose).

Philip May 2 Dec 03, 2021
PyHarmonize: Adding harmony lines to recorded melodies in Python

PyHarmonize: Adding harmony lines to recorded melodies in Python About To use this module, the user provides a wav file containing a melody, the key i

Julian Kappler 2 May 20, 2022
AtsPy: Automated Time Series Models in Python (by @firmai)

Automated Time Series Models in Python (AtsPy) SSRN Report Easily develop state of the art time series models to forecast univariate data series. Simp

Derek Snow 465 Jan 02, 2023
Meerkat provides fast and flexible data structures for working with complex machine learning datasets.

Meerkat makes it easier for ML practitioners to interact with high-dimensional, multi-modal data. It provides simple abstractions for data inspection, model evaluation and model training supported by

Robustness Gym 115 Dec 12, 2022
Python package for stacking (machine learning technique)

vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa

Igor Ivanov 671 Dec 25, 2022
database for artificial intelligence/machine learning data

AIDB v0.0.1 database for artificial intelligence/machine learning data Overview aidb is a database designed for large dataset for machine learning pro

Aarush Gupta 1 Oct 24, 2021
Interactive Parallel Computing in Python

Interactive Parallel Computing with IPython ipyparallel is the new home of IPython.parallel. ipyparallel is a Python package and collection of CLI scr

IPython 2.3k Dec 30, 2022
A Lucid Framework for Transparent and Interpretable Machine Learning Models.

Currently a Beta-Version lucidmode is an open-source, low-code and lightweight Python framework for transparent and interpretable machine learning mod

lucidmode 15 Aug 12, 2022
Confidence intervals for scikit-learn forest algorithms

forest-confidence-interval: Confidence intervals for Forest algorithms Forest algorithms are powerful ensemble methods for classification and regressi

272 Dec 01, 2022
Test symmetries with sklearn decision tree models

Test symmetries with sklearn decision tree models Setup Begin from an environment with a recent version of python 3. source setup.sh Leave the enviro

Rupert Tombs 2 Jul 19, 2022
Machine learning algorithms implementation

Machine learning algorithms implementation This repository consisits of implementation of various machine learning algorithms. The algorithms implemen

Karun Dawadi 1 Jan 03, 2022
Machine Learning Algorithms

Machine-Learning-Algorithms In this project, the dataset was created through a survey opened on Google forms. The purpose of the form is to find the p

Göktuğ Ayar 3 Aug 10, 2022
Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Artsem Zhyvalkouski 64 Nov 30, 2022
This is a Cricket Score Predictor that predicts the first innings score of a T20 Cricket match using Machine Learning

This is a Cricket Score Predictor that predicts the first innings score of a T20 Cricket match using Machine Learning. It is a Web Application.

Developer Junaid 3 Aug 04, 2022
Simple and flexible ML workflow engine.

This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable flow to handle requests. Engine is designed to be configurable wit

Katana ML 295 Jan 06, 2023
Official code for HH-VAEM

HH-VAEM This repository contains the official Pytorch implementation of the Hierarchical Hamiltonian VAE for Mixed-type Data (HH-VAEM) model and the s

Ignacio Peis 8 Nov 30, 2022