Data Model built using Logistic Regression Algorithm on Python.

Overview

Logistic-Regression

Problem Statement:

Your client is a retail banking institution. Term deposits are a major source of income for a bank.
A term deposit is a cash investment held at a financial institution. Your money is invested for an agreed rate of interest over a fixed amount of time, or term.
The bank has various outreach plans to sell term deposits to their customers such as email marketing, advertisements, telephonic marketing and digital marketing.
Telephonic marketing campaigns still remain one of the most effective way to reach out to people. However, they require huge investment as large call centers are hired to actually execute these campaigns. Hence, it is crucial to identify the customers most likely to convert beforehand so that they can be specifically targeted via call. You are provided with the client data such as : age of the client, their job type, their marital status, etc. Along with the client data, you are also provided with the information of the call such as the duration of the call, day and month of the call, etc. Given this information, your task is to predict if the client will subscribe to term deposit.

Data: You are provided with following files:

  1. train.csv : Use this dataset to train the model. This file contains all the client and call details as well as the target variable “subscribed”. You have to train your model using this file.

  2. test.csv : Use the trained model to predict whether a new set of clients will subscribe the term deposit.

Data Dictionary: Here is the description of all the variables: Variable Definition ID Unique client ID age Age of the client job Type of job marital Marital status of the client education Education level default Credit in default. housing Housing loan
loan Personal loan contact Type of communication month Contact month day_of_week Day of week of contact duration Contact duration campaign number of contacts performed during this campaign to the client pdays number of days that passed by after the client was last contacted previous number of contacts performed before this campaign poutcome outcome of the previous marketing campaign Subscribed(target) has the client subscribed a term deposit?

How good are your predictions?
Evaluation Metric: The Evaluation metric for this competition is accuracy. Solution Checker: You can use solution_checker.xlsx to generate score (accuracy) of your predictions.
This is an excel sheet where you are provided with the test IDs and you have to submit your predictions in the “subscribed” column. Below are the steps to submit your predictions and generate score: a. Save the predictions on test.csv file in a new csv file.
b. Open the generated csv file, copy the predictions and paste them in the subscribed column of solution_checker.xlsx file. c. Your score will be generated automatically and will be shown in Your Accuracy Score column.

Owner
Hemanth Babu Muthineni
Learn>Explore>Innovate
Hemanth Babu Muthineni
There are some basic arithmatic in Pattern Recognization and Machine Learning writed in Python in this repository

There are some basic arithmatic in Pattern Recognization and Machine Learning writed in Python in this repository

1 Nov 19, 2021
🧬 Training the car to do self-parking using a genetic algorithm

🧬 Training the car to do self-parking using a genetic algorithm

Oleksii Trekhleb 652 Jan 03, 2023
This is the code repository for 40 Algorithms Every Programmer Should Know , published by Packt.

40 Algorithms Every Programmer Should Know, published by Packt

Packt 721 Jan 02, 2023
Repository for Comparison based sorting algorithms in python

Repository for Comparison based sorting algorithms in python. This was implemented for project one submission for ITCS 6114 Data Structures and Algorithms under the guidance of Dr. Dewan at the Unive

Devashri Khagesh Gadgil 1 Dec 20, 2021
PickMush - A mini study/project on boosting algorithm

PickMush A mini project implementing Boosting Author Shashwat Vaibhav What does it do? Classifies whether Mushroom is edible or is non-edible (binary

Shashwat Vaibahav 3 Nov 08, 2022
Wordle-solver - A program that solves a Wordle using a simple algorithm

Wordle Solver A program that solves a Wordle using a simple algorithm. To see it

Luc Bouchard 3 Feb 13, 2022
Better control of your asyncio tasks

quattro: task control for asyncio quattro is an Apache 2 licensed library, written in Python, for task control in asyncio applications. quattro is inf

Tin Tvrtković 37 Dec 28, 2022
Dynamic Programming-Join Optimization Algorithm

DP-JOA Join optimization is the process of optimizing the joining, or combining, of two or more tables in a database. Here is a simple join optimizati

Haoze Zhou 3 Feb 03, 2022
Using A * search algorithm and GBFS search algorithm to solve the Romanian problem

Romanian-problem-using-Astar-and-GBFS Using A * search algorithm and GBFS search algorithm to solve the Romanian problem Romanian problem: The agent i

Mahdi Hassanzadeh 6 Nov 22, 2022
N Queen Problem using Genetic Algorithm

The N Queen is the problem of placing N chess queens on an N×N chessboard so that no two queens attack each other.

Mahdi Hassanzadeh 2 Nov 11, 2022
Rover. Finding the shortest pass by Dijkstra’s shortest path algorithm

rover Rover. Finding the shortest path by Dijkstra’s shortest path algorithm Задача Вы — инженер, проектирующий роверы-беспилотники. Вам надо спроекти

1 Nov 11, 2021
Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control

Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control.

Martin 1 Jan 01, 2022
Slight modification to one of the Facebook Salina examples, to test the A2C algorithm on financial series.

Facebook Salina - Gym_AnyTrading Slight modification of Facebook Salina Reinforcement Learning - A2C GPU example for financial series. The gym FOREX d

Francesco Bardozzo 5 Mar 14, 2022
Gnat - GNAT is NOT Algorithmic Trading

GNAT GNAT is NOT Algorithmic Trading! GNAT is a financial tool with two goals in

Sher Shah 2 Jan 09, 2022
Zipline, a Pythonic Algorithmic Trading Library

Zipline, a Pythonic Algorithmic Trading Library

Stefan Jansen 463 Jan 08, 2023
Primedice like provably fair algorithm

Primedice like provably fair algorithm

Ryu juheon 3 Dec 02, 2022
Python package to monitor the power consumption of any algorithm

CarbonAI This project aims at creating a python package that allows you to monitor the power consumption of any python function. Documentation The com

Capgemini Invent France 36 Nov 11, 2022
Python algorithm to determine the optimal elevation threshold of a GNSS receiver, by using a statistical test known as the Brown-Forsynthe test.

Levene and Brown-Forsynthe: Test for variances Application to Global Navigation Satellite Systems (GNSS) Python algorithm to determine the optimal ele

Nicolas Gachancipa 2 Aug 09, 2022
An NUS timetable generator which uses a genetic algorithm to optimise timetables to suit the needs of NUS students.

A timetable optimiser for NUS which uses an evolutionary algorithm to "breed" a timetable suited to your needs.

Nicholas Lee 3 Jan 09, 2022
FLIght SCheduling OPTimization - a simple optimization library for flight scheduling and related problems in the discrete domain

Fliscopt FLIght SCheduling OPTimization 🛫 or fliscopt is a simple optimization library for flight scheduling and related problems in the discrete dom

33 Dec 17, 2022