From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Related tags

Deep LearningCCA-SSG
Overview

[NeurIPS 2021]-From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.

Dependencies

  • Python 3.7
  • PyTorch 1.7.1
  • dgl 0.6.0

Datasets

Citation Networks: 'Cora', 'Citeseer' and 'Pubmed'.

Co-occurence Networks: 'Amazon-Computer', 'Amazon-Photo', 'Coauthor-CS' and 'Coauthor-Physics'.

Dataset # Nodes # Edges # Classes # Features
Cora 2,708 10,556 7 1,433
Citeseer 3,327 9,228 6 3,703
Pubmed 19,717 88,651 3 500
Amazon-Computer 13,752 574,418 10 767
Amazon-Photo 7,650 287,326 8 745
Coauthor-CS 18,333 327,576 15 6,805
Coauthor-Physics 34,493 991,848 5 8,451

Usage

To run the codes, use the following commands:

# Cora
python main.py --dataname cora --epochs 50 --lambd 1e-3 --dfr 0.1 --der 0.4 --lr2 1e-2 --wd2 1e-4

# Citeseer
python main.py --dataname citeseer --epochs 20 --n_layers 1 --lambd 5e-4 --dfr 0.0 --der 0.4 --lr2 1e-2 --wd2 1e-2

# Pubmed
python main.py --dataname pubmed --epochs 100 --lambd 1e-3 --dfr 0.3 --der 0.5 --lr2 1e-2 --wd2 1e-4

# Amazon-Computer
python main.py --dataname comp --epochs 50 --lambd 5e-4 --dfr 0.1 --der 0.3 --lr2 1e-2 --wd2 1e-4

# Amazon-Photo
python main.py --dataname photo --epochs 50 --lambd 1e-3 --dfr 0.2 --der 0.3 --lr2 1e-2 --wd2 1e-4

# Coauthor-CS
python main.py --dataname cs --epochs 50 --lambd 1e-3 --dfr 0.2 --lr2 5e-3 --wd2 1e-4 --use_mlp

# Coauthor-Physics
python main.py --dataname physics --epochs 100 --lambd 1e-3 --dfr 0.5 --der 0.5 --lr2 5e-3 --wd2 1e-4

Reference

If our paper and code are useful for your research, please cite the following article:

@inproceedings{zhang2021canonical,
  title={From canonical correlation analysis to self-supervised graph neural networks},
  author={Zhang, Hengrui and Wu, Qitian and Yan, Junchi and Wipf, David and Philip, S Yu},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}
Owner
Hengrui Zhang
Hengrui Zhang
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Zhiqiang Shen 16 Nov 04, 2020
PyTorch implementation of some learning rate schedulers for deep learning researcher.

pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu

Soohwan Kim 59 Dec 08, 2022
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Towards End-to-End Image Compression and Analysis with Transformers Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analy

37 Dec 21, 2022
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 364 Dec 28, 2022
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
[ICCV 2021] Target Adaptive Context Aggregation for Video Scene Graph Generation

Target Adaptive Context Aggregation for Video Scene Graph Generation This is a PyTorch implementation for Target Adaptive Context Aggregation for Vide

Multimedia Computing Group, Nanjing University 44 Dec 14, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
Unity Propagation in Bayesian Networks Handling Inconsistency via Unity Smoothing

This repository contains the scripts needed to generate the results from the paper Unity Propagation in Bayesian Networks Handling Inconsistency via U

0 Jan 19, 2022
Learning Confidence for Out-of-Distribution Detection in Neural Networks

Learning Confidence Estimates for Neural Networks This repository contains the code for the paper Learning Confidence for Out-of-Distribution Detectio

235 Jan 05, 2023
CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

CSAC Introduction This repository contains the implementation code for paper: Co

ScottYuan 5 Jul 22, 2022
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023
Make Watson Assistant send messages to your Discord Server

Make Watson Assistant send messages to your Discord Server Prerequisites Sign up for an IBM Cloud account. Fill in the required information and press

1 Jan 10, 2022
A Simplied Framework of GAN Inversion

Framework of GAN Inversion Introcuction You can implement your own inversion idea using our repo. We offer a full range of tuning settings (in hparams

Kangneng Zhou 13 Sep 27, 2022
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 188 Dec 29, 2022
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.

Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy

emmanuel 47 Nov 06, 2022