From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Related tags

Deep LearningCCA-SSG
Overview

[NeurIPS 2021]-From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.

Dependencies

  • Python 3.7
  • PyTorch 1.7.1
  • dgl 0.6.0

Datasets

Citation Networks: 'Cora', 'Citeseer' and 'Pubmed'.

Co-occurence Networks: 'Amazon-Computer', 'Amazon-Photo', 'Coauthor-CS' and 'Coauthor-Physics'.

Dataset # Nodes # Edges # Classes # Features
Cora 2,708 10,556 7 1,433
Citeseer 3,327 9,228 6 3,703
Pubmed 19,717 88,651 3 500
Amazon-Computer 13,752 574,418 10 767
Amazon-Photo 7,650 287,326 8 745
Coauthor-CS 18,333 327,576 15 6,805
Coauthor-Physics 34,493 991,848 5 8,451

Usage

To run the codes, use the following commands:

# Cora
python main.py --dataname cora --epochs 50 --lambd 1e-3 --dfr 0.1 --der 0.4 --lr2 1e-2 --wd2 1e-4

# Citeseer
python main.py --dataname citeseer --epochs 20 --n_layers 1 --lambd 5e-4 --dfr 0.0 --der 0.4 --lr2 1e-2 --wd2 1e-2

# Pubmed
python main.py --dataname pubmed --epochs 100 --lambd 1e-3 --dfr 0.3 --der 0.5 --lr2 1e-2 --wd2 1e-4

# Amazon-Computer
python main.py --dataname comp --epochs 50 --lambd 5e-4 --dfr 0.1 --der 0.3 --lr2 1e-2 --wd2 1e-4

# Amazon-Photo
python main.py --dataname photo --epochs 50 --lambd 1e-3 --dfr 0.2 --der 0.3 --lr2 1e-2 --wd2 1e-4

# Coauthor-CS
python main.py --dataname cs --epochs 50 --lambd 1e-3 --dfr 0.2 --lr2 5e-3 --wd2 1e-4 --use_mlp

# Coauthor-Physics
python main.py --dataname physics --epochs 100 --lambd 1e-3 --dfr 0.5 --der 0.5 --lr2 5e-3 --wd2 1e-4

Reference

If our paper and code are useful for your research, please cite the following article:

@inproceedings{zhang2021canonical,
  title={From canonical correlation analysis to self-supervised graph neural networks},
  author={Zhang, Hengrui and Wu, Qitian and Yan, Junchi and Wipf, David and Philip, S Yu},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}
Owner
Hengrui Zhang
Hengrui Zhang
Pytorch implementation of Zero-DCE++

Zero-DCE++ You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html. You can find the details of our CVPR version: https://li

Chongyi Li 157 Dec 23, 2022
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
We have made you a wrapper you can't refuse

We have made you a wrapper you can't refuse We have a vibrant community of developers helping each other in our Telegram group. Join us! Stay tuned fo

20.6k Jan 09, 2023
Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

Jacob Zhong 27 Jul 07, 2022
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

Facebook Research 1k Dec 31, 2022
Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

PPO-BiHyb This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Grap

<a href=[email protected]"> 66 Nov 23, 2022
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022
A curated list of awesome Active Learning

Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea

BAI Fan 431 Jan 03, 2023
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Viperdb - A tiny log-structured key-value database written in pure Python

ViperDB 🐍 ViperDB is a lightweight embedded key-value store written in pure Pyt

17 Oct 17, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
PyTorch implementation of PP-LCNet

PP-LCNet-Pytorch Pre-Trained Models Google Drive p018 Accuracy Models Top1 Top5 PPLCNet_x0_25 0.5186 0.7565 PPLCNet_x0_35 0.5809 0.8083 PPLCNet_x0_5 0

24 Dec 12, 2022
Pytorch code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral)

DPFM Code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral) Installation This implementation runs on python = 3.7, use pip to install depend

Souhaib Attaiki 29 Oct 03, 2022
Gin provides a lightweight configuration framework for Python

Gin Config Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser Gin provides a lightweight configu

Google 1.7k Jan 03, 2023
Retrieval.pytorch - The code we used in [2020 DIGIX]

Retrieval.pytorch - The code we used in [2020 DIGIX]

Guo-Hua Wang 2 Feb 07, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
Bayesian Neural Networks in PyTorch

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of sampl

Jurijs Nazarovs 7 May 03, 2022