Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

Related tags

Deep Learningcoliee
Overview

COLIEE 2021 - task 2: Legal Case Entailment

This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the paper To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment. There has been mounting evidence that pretrained language models fine-tuned on large and diverse supervised datasets can transfer well to a variety of out-of-domain tasks. In this work, we investigate this transfer ability to the legal domain. For that, we participated in the legal case entailment task of COLIEE 2021, in which we use such models with no adaptations to the target domain. Our submissions achieved the highest scores, surpassing the second-best submission by more than six percentage points. Our experiments confirm a counter-intuitive result in the new paradigm of pretrained language models: that given limited labeled data, models with little or no adaption to the target task can be more robust to changes in the data distribution and perform better on held-out datasets than models fine-tuned on it.

Models

monoT5-zero-shot: We use a model T5 Large fine-tuned on MS MARCO, a dataset of approximately 530k query and relevant passage pairs. We use a checkpoint available at Huggingface’smodel hub that was trained with a learning rate of 10−3 using batches of 128 examples for 10k steps, or approximately one epoch of the MS MARCO dataset. In each batch, a roughly equal number of positive and negative examples are sampled.

monoT5: We further fine-tune monoT5-zero-shot on the COLIEE 2020 training set following a similar training procedure described for monoT5-zero-shot. The model is fine-tuned with a learning rate of 10−3 for 80 steps using batches of size 128, which corresponds to 20 epochs. Each batch has the same number of positive and negative examples.

DeBERTa: Decoding-enhanced BERT with disentangled attention(DeBERTa) improves on the original BERT and RoBERTa architectures by introducing two techniques: the disentangled attention mechanism and an enhanced mask decoder. Both improvements seek to introduce positional information to the pretraining procedure, both in terms of the absolute position of a token and the relative position between them. We fine-tune DeBERTa on the COLIEE 2020 training set following a similar training procedure described for monoT5.

DebertaT5 (Ensemble): We use the following method to combine the predictions of monoT5 and DeBERTa (both fine-tuned on COLIEE 2020 dataset): We concatenate the final set of paragraphs selected by each model and remove duplicates, preserving the highest score. It is important to note that our method does not combine scores between models. The final answer for each test example is composed of individual answers from one or both models. It ensures that only answers with a certain degree of confidence are maintained, which generally leads to an increase in precision.

Results

Model Train data Evaluation F1 Description
Median of submissions Coliee 58.60
Coliee 2nd best team Coliee 62.74
DeBERTa (ours) Coliee Coliee 63.39 Single model
monoT5 (ours) Coliee Coliee 66.10 Single model
monoT5-zero-shot (ours) MS Marco Coliee 68.72 Single model
DebertaT5 (ours) Coliee Coliee 69.12 Ensemble

In this table, we present the results. Our main finding is that our zero-shot model achieved the best result of a single model on 2021 test data, outperforming DeBERTa and monoT5, which were fine-tuned on the COLIEE dataset. As far as we know, this is the first time that a zero-shot model outperforms fine-tuned models in the task of legal case entailment. Given limited annotated data for fine-tuning and a held-out test data, such as the COLIEE dataset, our results suggest that a zero-shot model fine-tuned on a large out-of-domain dataset may be more robust to changes in data distribution and may generalize better on unseen data than models fine-tuned on a small domain-specific dataset. Moreover, our ensemble method effectively combines DeBERTa and monoT5 predictions,achieving the best score among all submissions (row 6). It is important to note that despite the performance of DebertaT5 being the best in the COLIEE competition, the ensemble method requires training time, computational resources and perhaps also data augmentation to perform well on the task, while monoT5-zero-shot does not need any adaptation. The model is available online and ready to use.

Conclusion

Based on those results, we question the common assumption that it is necessary to have labeled training data on the target domain to perform well on a task. Our results suggest that fine-tuning on a large labeled dataset may be enough.

How do I get the dataset?

Those who wish to use previous COLIEE data for a trial, please contact rabelo(at)ualberta.ca.

How do I evaluate?

As our best model is a zero-shot one, we provide only the evaluation script.

References

[1] Document Ranking with a Pretrained Sequence-to-Sequence Model

[2] DeBERTa: Decoding-enhanced BERT with Disentangled Attention

[3] ICAIL '21: Proceedings of the Eighteenth International Conference on Artificial Intelligence and Law

[4] Proceedings of the Eigth International Competition on Legal Information Extraction/Entailment

How do I cite this work?

 @article{to_tune,
    title={To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment},
    author={Moraes, Guilherme and Rodrigues, Ruan and Lotufo, Roberto and Nogueira, Rodrigo},
    journal={ICAIL '21: Proceedings of the Eighteenth International Conference on Artificial Intelligence and Law June 2021 Pages 295–300},
    url={https://dl.acm.org/doi/10.1145/3462757.3466103},
    year={2021}
}
Owner
NeuralMind
Deep Learning for NLP and image processing
NeuralMind
Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion Read our ICRA 2021 paper here. Check out the 3 minute video for the quick intro or the full prese

Aleksandr Kim 276 Dec 30, 2022
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Katsuya Hyodo 6 May 15, 2022
An self sufficient AI that crawls the web to learn how to generate art from keywords

Roxx-IO - The Smart Artist AI! TO DO / IDEAS Implement Web-Scraping Functionality Figure out a less annoying (and an off button for it) text to speech

Tatz 5 Mar 21, 2022
This is the repo for Uncertainty Quantification 360 Toolkit.

UQ360 The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncert

International Business Machines 207 Dec 30, 2022
HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

HAR-stacked-residual-bidir-LSTM The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (H

Guillaume Chevalier 287 Dec 27, 2022
Revisiting Global Statistics Aggregation for Improving Image Restoration

Revisiting Global Statistics Aggregation for Improving Image Restoration Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu Paper: https://arxiv.org/pd

MEGVII Research 128 Dec 24, 2022
A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

IconQA About IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and c

Pan Lu 24 Dec 30, 2022
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
Explore extreme compression for pre-trained language models

Code for paper "Exploring extreme parameter compression for pre-trained language models ICLR2022"

twinkle 16 Nov 14, 2022
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
Not Suitable for Work (NSFW) classification using deep neural network Caffe models.

Open nsfw model This repo contains code for running Not Suitable for Work (NSFW) classification deep neural network Caffe models. Please refer our blo

Yahoo 5.6k Jan 05, 2023
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Phil Wang 40 Dec 22, 2022
Open-Set Recognition: A Good Closed-Set Classifier is All You Need

Open-Set Recognition: A Good Closed-Set Classifier is All You Need Code for our paper: "Open-Set Recognition: A Good Closed-Set Classifier is All You

194 Jan 03, 2023
Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021.

PHDimGeneralization Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021. Overvie

Tolga Birdal 13 Nov 08, 2022
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by

VITA lab at EPFL 125 Dec 23, 2022
(AAAI 2021) Progressive One-shot Human Parsing

End-to-end One-shot Human Parsing This is the official repository for our two papers: Progressive One-shot Human Parsing (AAAI 2021) End-to-end One-sh

54 Dec 30, 2022
Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs In this work, we propose an algorithm DP-SCAFFOLD(-warm), whic

19 Nov 10, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy

49 Jan 07, 2023
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
Machine-in-the-Loop Rewriting for Creative Image Captioning

Machine-in-the-Loop Rewriting for Creative Image Captioning Data Annotated sources of data used in the paper: Data Source URL Mohammed et al. Link Gor

Vishakh P 6 Jul 24, 2022