Provably Rare Gem Miner.

Overview

Provably Rare Gem Miner

just another random project by yoyoismee.eth

useful link

useful thing you should know

  • read contract -> gems(gemID) to get useful info
  • write contract -> mine to claim(kind, salt) to claim your NFT

to run. just edit the python file and run it.

pip install -r requirement.txt
python3 stick_the_miner.py

or new one auto_mine.py for less input. but you'll need infura account

Ps. too lazy to write docs. but it's 50 LoCs have fun.


why stick the miner ? welp.. this is part of the stick the BUIDLer series.

TL;DR - I'm working on a series of opensource NFT related project just for fun.

Key parameters to change if you are using orginal version 'stick_the_miner.py' (cr. K Nattakit's FB post)

  • chain_id - eth:1, fantom:250
  • entropy - ??
  • gemAddr - Game address, can get from https://gems.alphafinance.io/ (loot/bloot/rarity)
  • userAddr - your Wallet address
  • kind = ประเภทของเพชรที่จะขุด ผมแนะนำเป็น Emerald เพราะ return/difficult สูงที่สุด ง่าย ๆ คือคุณจะกำไรเร็วกว่านั่นเอง
  • nonce - number of times you've minted a gem (https://gems.alphafinance.io/ and connect your wallet)
  • diff - difficulty of gemID (https://gems.alphafinance.io/), note that this changes everytime someone minted that gem, so you need to change it too

(more detail) how to use 'auto_mine.py', the updated version of stick_the_miner

  • benefits: manual version (stick_the_miner.py) requires you to update the 'diff' parameter every time someone minted the nft of the target gem, and 'nounce' if you successfully minted one. This version automates that so you just have to rerun to update.
  • steps:
    1. update requirements pip install -r requirements.txt
    1. create an account at (https://infura.io/), select your chain (e.g. Ethereum), create a project and obtain your project ID
    1. create a .env file in the same format as .env-example, inputing your information from (2.), your wallet address and gem ID
    1. python3 auto_mine.py
  • Note: although you dont have to manually adjust 'diff' parameter everytime, you still need to restart the process everytime someone minted target gem's nft still

Once you get the salt:

Multicore version

  • Normal version uses only 1 core of processors, the multicore version should be ~8 times faster depending on your CPU / coreNumber variable
  • You can select the number of processors by chainging coreNumber variable (should not exceed ~16 tho)
  • "fantom_mining_pool_auto_multicore_line.py" is the multicore version of fantom_mining_pool.py
  • for mining by yourself and manual claim please use "fantom_multicore_line.py"
Comments
  • 🎨Added colorlog package for output with colors

    🎨Added colorlog package for output with colors

    I use the classic stick_the_miner.py for mining and had a hard time looking for the salt output due to the monochrome color. So, I decided to differentiate the salt output with the colorlog package😁

    opened by mickyngub 2
  • Multicore version of the miner for both pool mining and self mining

    Multicore version of the miner for both pool mining and self mining

    Depending on your CPU and the coreNumber variable, it should be ~8 times faster than the original version but with the drawback of a tremendous increase in CPU utilization.

    opened by mickyngub 1
  • Lowering the priority of python.exe to reduce lags

    Lowering the priority of python.exe to reduce lags

    If a user is mining gems in the background while using other compute-intensive programs, the user might experience lags due to 100% CPU utilization. By lowering the priority of python.exe miner, other programs will have higher priorities. Thus, users would be less likely to experience lagging issues.

    Under a normal circumstance in which the CPU utilization is less than 100%, it should have no impact on iter/sec.

    Before

    image

    After

    image

    opened by mickyngub 1
  • update fantom_mining_pool

    update fantom_mining_pool

    • edit .env-example add NOTIFY_AUTH_TOKEN, DIFF and PRIVATE_KEY
    • edit var private_key to PRIVATE_KEY
    • insert if PRIVATE_KEY != ''
    • get PRIVATE_KEY from .env for safety
    opened by NuttakitDW 0
  • why other people mint so quickly

    why other people mint so quickly

    https://ftmscan.com/address/0x729d74098f6669541ed1b69403ae75f080ccf1e1

    this people mint level 4 gems so quickly ,his salt is too low, but execute success.

    are you knonw the reason? image

    opened by sumrise 3
  • refactor to support multiple chain properly

    refactor to support multiple chain properly

    some of our code is unnecessary based on Ethereum e.g. infura_key, hard code chain no, and more todo: refactor to a more generic one that would be valid across all EVM compatible chain e.g. infura_key -> rpc_provider (also fix others code to match this change) and more

    also TODO: remove the quick fix for fantom file LOL

    opened by yoyoismee 0
  • Idea for sampling different range of int random on multiple workers

    Idea for sampling different range of int random on multiple workers

    Will probably do tmr, parse n worker to the get_salt function so each worker could random int from different range of numbers eg. worker 1: 1-2^122, worker 2: 2^122 to 2^123

    opened by Duayt 1
Releases(v0.0.1d-test-build)
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
An energy estimator for eyeriss-like DNN hardware accelerator

Energy-Estimator-for-Eyeriss-like-Architecture- An energy estimator for eyeriss-like DNN hardware accelerator This is an energy estimator for eyeriss-

HEXIN BAO 2 Mar 26, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

63 Nov 18, 2022
pytorch implementation of fast-neural-style

fast-neural-style 🌇 🚀 NOTICE: This codebase is no longer maintained, please use the codebase from pytorch examples repository available at pytorch/e

Abhishek Kadian 405 Dec 15, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
ivadomed is an integrated framework for medical image analysis with deep learning.

Repository on the collaborative IVADO medical imaging project between the Mila and NeuroPoly labs.

144 Dec 19, 2022
🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar) The PASTIS Dataset Dataset presentation PASTIS is a benchmark dataset for

86 Jan 04, 2023
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
Predicting Student Attentiveness using OpenCV

Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st

Johann Pinto 2 Aug 20, 2022
Reproduction of Vision Transformer in Tensorflow2. Train from scratch and Finetune.

Vision Transformer(ViT) in Tensorflow2 Tensorflow2 implementation of the Vision Transformer(ViT). This repository is for An image is worth 16x16 words

sungjun lee 42 Dec 27, 2022
Cortex-compatible model server for Python and TensorFlow

Nucleus model server Nucleus is a model server for TensorFlow and generic Python models. It is compatible with Cortex clusters, Kubernetes clusters, a

Cortex Labs 14 Nov 27, 2022
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022
Python implementation of Project Fluent

Project Fluent This is a collection of Python packages to use the Fluent localization system. python-fluent consists of these packages: fluent.syntax

Project Fluent 155 Dec 28, 2022
A simple Python library for stochastic graphical ecological models

What is Viridicle? Viridicle is a library for simulating stochastic graphical ecological models. It implements the continuous time models described in

Theorem Engine 0 Dec 04, 2021
Platform-agnostic AI Framework 🔥

🇬🇧 TensorLayerX is a multi-backend AI framework, which can run on almost all operation systems and AI hardwares, and support hybrid-framework progra

TensorLayer Community 171 Jan 06, 2023
MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

MemStream Implementation of MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift . Siddharth Bhatia, Arjit Jain, Shivi

Stream-AD 61 Dec 02, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Trans

Zhuang AI Group 105 Dec 06, 2022
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

CRF - Conditional Random Fields A library for dense conditional random fields (CRFs). This is the official accompanying code for the paper Regularized

Đ.Khuê Lê-Huu 21 Nov 26, 2022
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
Fast Neural Representations for Direct Volume Rendering

Fast Neural Representations for Direct Volume Rendering Sebastian Weiss, Philipp Hermüller, Rüdiger Westermann This repository contains the code and s

Sebastian Weiss 20 Dec 03, 2022