Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Related tags

Deep LearningDDU
Overview

Deep Deterministic Uncertainty

arXiv Pytorch 1.8.1 License: MIT

This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty.

If the code or the paper has been useful in your research, please add a citation to our work:

@article{mukhoti2021deterministic,
  title={Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty},
  author={Mukhoti, Jishnu and Kirsch, Andreas and van Amersfoort, Joost and Torr, Philip HS and Gal, Yarin},
  journal={arXiv preprint arXiv:2102.11582},
  year={2021}
}

Dependencies

The code is based on PyTorch and requires a few further dependencies, listed in environment.yml. It should work with newer versions as well.

OoD Detection

Datasets

For OoD detection, you can train on CIFAR-10/100. You can also train on Dirty-MNIST by downloading Ambiguous-MNIST (amnist_labels.pt and amnist_samples.pt) from here and using the following training instructions.

Training

In order to train a model for the OoD detection task, use the train.py script. Following are the main parameters for training:

--seed: seed for initialization
--dataset: dataset used for training (cifar10/cifar100/dirty_mnist)
--dataset-root: /path/to/amnist_labels.pt and amnist_samples.pt/ (if training on dirty-mnist)
--model: model to train (wide_resnet/vgg16/resnet18/resnet50/lenet)
-sn: whether to use spectral normalization (available for wide_resnet, vgg16 and resnets)
--coeff: Coefficient for spectral normalization
-mod: whether to use architectural modifications (leaky ReLU + average pooling in skip connections)
--save-path: path/for/saving/model/

As an example, in order to train a Wide-ResNet-28-10 with spectral normalization and architectural modifications on CIFAR-10, use the following:

python train.py \
       --seed 1 \
       --dataset cifar10 \
       --model wide_resnet \
       -sn -mod \
       --coeff 3.0 

Similarly, to train a ResNet-18 with spectral normalization on Dirty-MNIST, use:

python train.py \
       --seed 1 \
       --dataset dirty-mnist \
       --dataset-root /home/user/amnist/ \
       --model resnet18 \
       -sn \
       --coeff 3.0

Evaluation

To evaluate trained models, use evaluate.py. This script can evaluate and aggregate results over multiple experimental runs. For example, if the pretrained models are stored in a directory path /home/user/models, store them using the following directory structure:

models
├── Run1
│   └── wide_resnet_1_350.model
├── Run2
│   └── wide_resnet_2_350.model
├── Run3
│   └── wide_resnet_3_350.model
├── Run4
│   └── wide_resnet_4_350.model
└── Run5
    └── wide_resnet_5_350.model

For an ensemble of models, store the models using the following directory structure:

model_ensemble
├── Run1
│   ├── wide_resnet_1_350.model
│   ├── wide_resnet_2_350.model
│   ├── wide_resnet_3_350.model
│   ├── wide_resnet_4_350.model
│   └── wide_resnet_5_350.model
├── Run2
│   ├── wide_resnet_10_350.model
│   ├── wide_resnet_6_350.model
│   ├── wide_resnet_7_350.model
│   ├── wide_resnet_8_350.model
│   └── wide_resnet_9_350.model
├── Run3
│   ├── wide_resnet_11_350.model
│   ├── wide_resnet_12_350.model
│   ├── wide_resnet_13_350.model
│   ├── wide_resnet_14_350.model
│   └── wide_resnet_15_350.model
├── Run4
│   ├── wide_resnet_16_350.model
│   ├── wide_resnet_17_350.model
│   ├── wide_resnet_18_350.model
│   ├── wide_resnet_19_350.model
│   └── wide_resnet_20_350.model
└── Run5
    ├── wide_resnet_21_350.model
    ├── wide_resnet_22_350.model
    ├── wide_resnet_23_350.model
    ├── wide_resnet_24_350.model
    └── wide_resnet_25_350.model

Following are the main parameters for evaluation:

--seed: seed used for initializing the first trained model
--dataset: dataset used for training (cifar10/cifar100)
--ood_dataset: OoD dataset to compute AUROC
--load-path: /path/to/pretrained/models/
--model: model architecture to load (wide_resnet/vgg16)
--runs: number of experimental runs
-sn: whether the model was trained using spectral normalization
--coeff: Coefficient for spectral normalization
-mod: whether the model was trained using architectural modifications
--ensemble: number of models in the ensemble
--model-type: type of model to load for evaluation (softmax/ensemble/gmm)

As an example, in order to evaluate a Wide-ResNet-28-10 with spectral normalization and architectural modifications on CIFAR-10 with OoD dataset as SVHN, use the following:

python evaluate.py \
       --seed 1 \
       --dataset cifar10 \
       --ood_dataset svhn \
       --load-path /path/to/pretrained/models/ \
       --model wide_resnet \
       --runs 5 \
       -sn -mod \
       --coeff 3.0 \
       --model-type softmax

Similarly, to evaluate the above model using feature density, set --model-type gmm. The evaluation script assumes that the seeds of models trained in consecutive runs differ by 1. The script stores the results in a json file with the following structure:

{
    "mean": {
        "accuracy": mean accuracy,
        "ece": mean ECE,
        "m1_auroc": mean AUROC using log density / MI for ensembles,
        "m1_auprc": mean AUPRC using log density / MI for ensembles,
        "m2_auroc": mean AUROC using entropy / PE for ensembles,
        "m2_auprc": mean AUPRC using entropy / PE for ensembles,
        "t_ece": mean ECE (post temp scaling)
        "t_m1_auroc": mean AUROC using log density / MI for ensembles (post temp scaling),
        "t_m1_auprc": mean AUPRC using log density / MI for ensembles (post temp scaling),
        "t_m2_auroc": mean AUROC using entropy / PE for ensembles (post temp scaling),
        "t_m2_auprc": mean AUPRC using entropy / PE for ensembles (post temp scaling)
    },
    "std": {
        "accuracy": std error accuracy,
        "ece": std error ECE,
        "m1_auroc": std error AUROC using log density / MI for ensembles,
        "m1_auprc": std error AUPRC using log density / MI for ensembles,
        "m2_auroc": std error AUROC using entropy / PE for ensembles,
        "m2_auprc": std error AUPRC using entropy / PE for ensembles,
        "t_ece": std error ECE (post temp scaling),
        "t_m1_auroc": std error AUROC using log density / MI for ensembles (post temp scaling),
        "t_m1_auprc": std error AUPRC using log density / MI for ensembles (post temp scaling),
        "t_m2_auroc": std error AUROC using entropy / PE for ensembles (post temp scaling),
        "t_m2_auprc": std error AUPRC using entropy / PE for ensembles (post temp scaling)
    },
    "values": {
        "accuracy": accuracy list,
        "ece": ece list,
        "m1_auroc": AUROC list using log density / MI for ensembles,
        "m2_auroc": AUROC list using entropy / PE for ensembles,
        "t_ece": ece list (post temp scaling),
        "t_m1_auroc": AUROC list using log density / MI for ensembles (post temp scaling),
        "t_m1_auprc": AUPRC list using log density / MI for ensembles (post temp scaling),
        "t_m2_auroc": AUROC list using entropy / PE for ensembles (post temp scaling),
        "t_m2_auprc": AUPRC list using entropy / PE for ensembles (post temp scaling)
    },
    "info": {dictionary of args}
}

Results

Dirty-MNIST

To visualise DDU's performance on Dirty-MNIST (i.e., Fig. 1 of the paper), use fig_1_plot.ipynb. The notebook requires a pretrained LeNet, VGG-16 and ResNet-18 with spectral normalization trained on Dirty-MNIST and visualises the softmax entropy and feature density for Dirty-MNIST (iD) samples vs Fashion-MNIST (OoD) samples. The notebook also visualises the softmax entropies of MNIST vs Ambiguous-MNIST samples for the ResNet-18+SN model (Fig. 2 of the paper). The following figure shows the output of the notebook for the LeNet, VGG-16 and ResNet18+SN model we trained on Dirty-MNIST.

CIFAR-10 vs SVHN

The following table presents results for a Wide-ResNet-28-10 architecture trained on CIFAR-10 with SVHN as the OoD dataset. For the full set of results, refer to the paper.

Method Aleatoric Uncertainty Epistemic Uncertainty Test Accuracy Test ECE AUROC
Softmax Softmax Entropy Softmax Entropy 95.98+-0.02 0.85+-0.02 94.44+-0.43
Energy-based Softmax Entropy Softmax Density 95.98+-0.02 0.85+-0.02 94.56+-0.51
5-Ensemble Predictive Entropy Predictive Entropy 96.59+-0.02 0.76+-0.03 97.73+-0.31
DDU (ours) Softmax Entropy GMM Density 95.97+-0.03 0.85+-0.04 98.09+-0.10

Active Learning

To run active learning experiments, use active_learning_script.py. You can run active learning experiments on both MNIST as well as Dirty-MNIST. When running with Dirty-MNIST, you will need to provide a pretrained model on Dirty-MNIST to distinguish between clean MNIST and Ambiguous-MNIST samples. The following are the main command line arguments for active_learning_script.py.

--seed: seed used for initializing the first model (later experimental runs will have seeds incremented by 1)
--model: model architecture to train (resnet18)
-ambiguous: whether to use ambiguous MNIST during training. If this is set to True, the models will be trained on Dirty-MNIST, otherwise they will train on MNIST.
--dataset-root: /path/to/amnist_labels.pt and amnist_samples.pt/
--trained-model: model architecture of pretrained model to distinguish clean and ambiguous MNIST samples
-tsn: if pretrained model has been trained using spectral normalization
--tcoeff: coefficient of spectral normalization used on pretrained model
-tmod: if pretrained model has been trained using architectural modifications (leaky ReLU and average pooling on skip connections)
--saved-model-path: /path/to/saved/pretrained/model/
--saved-model-name: name of the saved pretrained model file
--threshold: Threshold of softmax entropy to decide if a sample is ambiguous (samples having higher softmax entropy than threshold will be considered ambiguous)
--subsample: number of clean MNIST samples to use to subsample clean MNIST
-sn: whether to use spectral normalization during training
--coeff: coefficient of spectral normalization during training
-mod: whether to use architectural modifications (leaky ReLU and average pooling on skip connections) during training
--al-type: type of active learning acquisition model (softmax/ensemble/gmm)
-mi: whether to use mutual information for ensemble al-type
--num-initial-samples: number of initial samples in the training set
--max-training-samples: maximum number of training samples
--acquisition-batch-size: batch size for each acquisition step

As an example, to run the active learning experiment on MNIST using the DDU method, use:

python active_learning_script.py \
       --seed 1 \
       --model resnet18 \
       -sn -mod \
       --al-type gmm

Similarly, to run the active learning experiment on Dirty-MNIST using the DDU baseline, with a pretrained ResNet-18 with SN to distinguish clean and ambiguous MNIST samples, use the following:

python active_learning_script.py \
       --seed 1 \
       --model resnet18 \
       -sn -mod \
       -ambiguous \
       --dataset-root /home/user/amnist/ \
       --trained-model resnet18 \
       -tsn \
       --saved-model-path /path/to/pretrained/model \
       --saved-model-name resnet18_sn_3.0_1_350.model \
       --threshold 1.0 \
       --subsample 1000 \
       --al-type gmm

Results

The active learning script stores all results in json files. The MNIST test set accuracy is stored in a json file with the following structure:

{
    "experiment run": list of MNIST test set accuracies one per acquisition step
}

When using ambiguous samples in the pool set, the script also stores the fraction of ambiguous samples acquired in each step in the following json:

{
    "experiment run": list of fractions of ambiguous samples in the acquired training set
}

Visualisation

To visualise results from the above json files, use the al_plot.ipynb notebook. The following diagram shows the performance of different baselines (softmax, ensemble PE, ensemble MI and DDU) on MNIST and Dirty-MNIST.

Questions

For any questions, please feel free to raise an issue or email us directly. Our emails can be found on the paper.

Owner
Jishnu Mukhoti
Graduate Student in Computer Science
Jishnu Mukhoti
A clean implementation based on AlphaZero for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4 and more

Alpha Zero General (any game, any framework!) A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play

Surag Nair 3.1k Jan 05, 2023
Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)

SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem

tyty 4 Aug 28, 2022
Generate pixel-style avatars with python.

face2pixel Generate pixel-style avatars with python. Run: Clone the project: git clone https://github.com/theodorecooper/face2pixel install requiremen

Theodore Cooper 2 May 11, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Dec 28, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
[IJCAI'21] Deep Automatic Natural Image Matting

Deep Automatic Natural Image Matting [IJCAI-21] This is the official repository of the paper Deep Automatic Natural Image Matting. Introduction | Netw

Jizhizi_Li 316 Jan 06, 2023
Deep Probabilistic Programming Course @ DIKU

Deep Probabilistic Programming Course @ DIKU

52 May 14, 2022
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
Machine Unlearning with SISA

Machine Unlearning with SISA Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, N

CleverHans Lab 70 Jan 01, 2023
Delta Conformity Sociopatterns Analysis - Delta Conformity Sociopatterns Analysis

Delta_Conformity_Sociopatterns_Analysis ∆-Conformity is a local homophily measur

2 Jan 09, 2022
Self-describing JSON-RPC services made easy

ReflectRPC Self-describing JSON-RPC services made easy Contents What is ReflectRPC? Installation Features Datatypes Custom Datatypes Returning Errors

Andreas Heck 31 Jul 16, 2022
A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

28 Aug 22, 2022
Code and models for "Rethinking Deep Image Prior for Denoising" (ICCV 2021)

DIP-denosing This is a code repo for Rethinking Deep Image Prior for Denoising (ICCV 2021). Addressing the relationship between Deep image prior and e

Computer Vision Lab. @ GIST 36 Dec 29, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
A model which classifies reviews as positive or negative.

SentiMent Analysis In this project I built a model to classify movie reviews fromn the IMDB dataset of 50K reviews. WordtoVec : Neural networks only w

Rishabh Bali 2 Feb 09, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit

STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code

NVIDIA Research Projects 101 Dec 12, 2022
Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Troyanskaya Laboratory 323 Jan 01, 2023
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023