Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

Related tags

Deep Learningqimera
Overview

Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

This repository is the official implementation of paper [Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples].

Overview of Qimera

Requirements

  • Python 3.6
  • PyTorch 1.8.1
  • Refer requirements.txt for other requirements

To install requirements:

pip install -r requirements.txt

Training

For Imagenet training, change the path of the validation set in .hocon file. To train the model described in the paper, run one of this command:

./run_cifar10_4bit.sh
./run_cifar100_4bit.sh
./run_imgnet_resnet18_4bit.sh
./run_imgnet_resnet50_4bit.sh
./run_imgnet_mobilenet_v2_4bit.sh

Refer other_train_scripts folder for 5bit settings.

Evaluation

To evaluate trained model, run the command below after training:

./eval_cifar10_4bit.sh
./eval_cifar100_4bit.sh
./eval_imgnet_resnet18_4bit.sh
./eval_imgnet_resnet50_4bit.sh
./eval_imgnet_mobilenet_v2_4bit.sh

Visualizing Feature Space

Feature space visualization of real or synthetic images described in Figure 3.

python experiments.py --pca_source
python experiments.py --gdfq_generator_path GENERATOR_WEIGHT_PATH --pca_gdfq --image_gdfq
python experiments.py --qimera_generator_path GENERATOR_WEIGHT_PATH --pca_qimera --pca_mix --pca_path --image_gdfq --image_mix

Results

Our model achieves the following performance on :

Dataset Model Teacher Net Accuracy 4bit Quantized Model Accuracy 5bit Quantized Model Accuracy
Cifar-10 ResNet-20 93.89% 91.26% 93.46%
Cifar-100 ResNet-20 70.33% 65.10% 69.02%
ImageNet ResNet-18 71.47% 63.84% 69.29%
ImageNet ResNet-50 77.73% 66.25% 75.32%
ImageNet MobileNetV2 73.03% 61.62% 70.45%

Generated Synthetic Images for Cifar10 :

Cifar10 Synthetic Images Generated By Qimera

License

This project is licensed under the terms of the GNU General Public License v3.0

Owner
Kanghyun Choi
Grad Student, ACSys Lab., CS, Yonsei Univ.
Kanghyun Choi
Deep Learning Pipelines for Apache Spark

Deep Learning Pipelines for Apache Spark The repo only contains HorovodRunner code for local CI and API docs. To use HorovodRunner for distributed tra

Databricks 2k Jan 08, 2023
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G

Hanhan 2 Aug 14, 2022
PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS.

PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS. With Live, you can build a working mobile app ML demo in minutes.

559 Jan 01, 2023
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
⚾🤖⚾ Automatic baseball pitching overlay in realtime

⚾ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

Tony Chou 240 Dec 05, 2022
A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

Emma 1 Jan 18, 2022
Diagnostic tests for linguistic capacities in language models

LM diagnostics This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguist

61 Jan 02, 2023
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022
Unofficial PyTorch implementation of Guided Dropout

Unofficial PyTorch implementation of Guided Dropout This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm

2 Jan 07, 2022
A simple tutoral for error correction task, based on Pytorch

gramcorrector A simple tutoral for error correction task, based on Pytorch Grammatical Error Detection (sentence-level) a binary sequence-based classi

peiyuan_gong 8 Dec 03, 2022
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
Code for "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection", ICRA 2021

FGR This repository contains the python implementation for paper "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection"(I

Yi Wei 31 Dec 08, 2022
OpenMMLab Image and Video Editing Toolbox

Introduction MMEditing is an open source image and video editing toolbox based on PyTorch. It is a part of the OpenMMLab project. The master branch wo

OpenMMLab 3.9k Jan 04, 2023
CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

CSAC Introduction This repository contains the implementation code for paper: Co

ScottYuan 5 Jul 22, 2022
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg

Denis Yarats 52 Jan 01, 2023
This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to generate a dynamic forecast from your own data.

📈 Automated Time Series Forecasting Background: This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to gene

Zach Renwick 42 Jan 04, 2023
A Python package for causal inference using Synthetic Controls

Synthetic Control Methods A Python package for causal inference using synthetic controls This Python package implements a class of approaches to estim

Oscar Engelbrektson 107 Dec 28, 2022
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor

Nader Akoury 27 Dec 20, 2022