Matplotlib Image labeller for classifying images

Overview

mpl-image-labeller

Binder Documentation Status

License PyPI Python Version

Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui!

For more see the documentation.

Install

pip install mpl-image-labeller

Key features

  • Simple interface
  • Uses keys instead of mouse
  • Only depends on Matplotlib
    • Works anywhere - from inside Jupyter to any supported GUI framework
  • Displays images with correct aspect ratio
  • Easily configurable keymap
  • Smart interactions with default Matplotlib keymap
  • Callback System (see examples/callbacks.py)

single class per image

gif of usage for labelling images of cats and dogs

multiple classes per image

gif of usage for labelling images of cats and dogs

Usage

import matplotlib.pyplot as plt
import numpy as np

from mpl_image_labeller import image_labeller

images = np.random.randn(5, 10, 10)
labeller = image_labeller(
    images, classes=["good", "bad", "meh"], label_keymap=["a", "s", "d"]
)
plt.show()

accessing the axis You can further modify the image (e.g. add masks over them) by using the plotting methods on axis object accessible by labeller.ax.

Lazy Loading Images If you want to lazy load your images you can provide a function to give the images. This function should take the integer idx as an argument and return the image that corresponds to that index. If you do this then you must also provide N_images in the constructor to let the object know how many images it should expect. See examples/lazy_loading.py for an example.

Controls

  • <- move one image back
  • -> move one image forward

To label images use the keys defined in the label_keymap argument - default 0, 1, 2...

Get the labels by accessing the labels property.

Overwriting default keymap

Matplotlib has default keybindings that it applied to all figures via rcparams.keymap that allow for actions such as s to save or q to quit. If you inlcude one of these keys as a shortcut for labelling as a class then that default keymap will be disabled for that figure.

Related Projects

This is not the first project to implement easy image labelling but seems to be the first to do so entirely in Matplotlib. The below projects implement varying degrees of complexity and/or additional features in different frameworks.

You might also like...
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening  images
Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening images

A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images 深度监督影像融合网络DSIFN用于高分辨率双时相遥感影像变化检测 Of

The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Object-Placement-Assessment-Dataset-OPA Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object p

For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

Rename Images with Auto Generated Neural Image Captions

Recaption Images with Generated Neural Image Caption Example Usage: Commandline: Recaption all images from folder /home/feng/Downloads/images to folde

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and Tensorflow wrappers, to make predictions on uploaded images.
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

Learning Continuous Image Representation with Local Implicit Image Function
Learning Continuous Image Representation with Local Implicit Image Function

LIIF This repository contains the official implementation for LIIF introduced in the following paper: Learning Continuous Image Representation with Lo

Comments
Releases(1.1.2)
  • 1.1.2(Nov 18, 2022)

  • 1.1.1(Nov 12, 2021)

    What's Changed

    • add github actions test by @ianhi in https://github.com/ianhi/mpl-image-labeller/pull/20
    • Autoscale cmaps + add tests by @ianhi in https://github.com/ianhi/mpl-image-labeller/pull/21
    • Updated callbacks example to show how to adjust overlay extent

    Full Changelog: https://github.com/ianhi/mpl-image-labeller/compare/1.1.0...1.1.1

    Source code(tar.gz)
    Source code(zip)
  • 1.1.0(Nov 1, 2021)

    What's Changed

    • Added ability for user to set the title https://github.com/ianhi/mpl-image-labeller/pull/15
    • Updated text positioning for single class labeller

    Full Changelog: https://github.com/ianhi/mpl-image-labeller/compare/1.0.0...1.1.0

    Source code(tar.gz)
    Source code(zip)
  • 1.0.0(Oct 30, 2021)

  • 0.5.0(Oct 29, 2021)

    • Fixed xlims getting messed up when zooming in https://github.com/ianhi/mpl-image-labeller/pull/9
    • Allow passing imshow_kwargs https://github.com/ianhi/mpl-image-labeller/commit/27afa0bf9633c5f59e2d3089f9fef789147e2b3c
    Source code(tar.gz)
    Source code(zip)
  • 0.4.0(Oct 29, 2021)

  • 0.3.0(Oct 27, 2021)

  • 0.2.0(Oct 27, 2021)

    Full Changelog: https://github.com/ianhi/mpl-image-labeller/compare/0.1.1...0.2.0

    Fixes:

    init_labels is respected

    new features:

    1. ax is not accesible through the .ax attribute
    2. images can now be a callable

    Thanks to @jrussell25 for suggesting these improvements

    Source code(tar.gz)
    Source code(zip)
  • 0.1.1(Oct 27, 2021)

Owner
Ian Hunt-Isaak
The embodiment of entropy - He/Him
Ian Hunt-Isaak
PyTorch implementation of UNet++ (Nested U-Net).

PyTorch implementation of UNet++ (Nested U-Net) This repository contains code for a image segmentation model based on UNet++: A Nested U-Net Architect

4ui_iurz1 642 Jan 04, 2023
Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Imanol Schlag 18 Oct 12, 2022
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
The code of “Similarity Reasoning and Filtration for Image-Text Matching” [AAAI2021]

SGRAF PyTorch implementation for AAAI2021 paper of “Similarity Reasoning and Filtration for Image-Text Matching”. It is built on top of the SCAN and C

Ronnie_IIAU 149 Dec 22, 2022
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
Automatically align face images 🙃→🙂. Can also do windowing and warping.

Automatic Face Alignment (AFA) Carl M. Gaspar & Oliver G.B. Garrod You have lots of photos of faces like this: But you want to line up all of the face

Carl Michael Gaspar 15 Dec 12, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
For visualizing the dair-v2x-i dataset

3D Detection & Tracking Viewer The project is based on hailanyi/3D-Detection-Tracking-Viewer and is modified, you can find the original version of the

34 Dec 29, 2022
The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021.

Personalized Trajectory Prediction via Distribution Discrimination (DisDis) The official PyTorch code implementation of "Personalized Trajectory Predi

25 Dec 20, 2022
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
Baseline and template code for node21 detection track

Nodule Detection Algorithm This codebase implements a baseline model, Faster R-CNN, for the nodule detection track in NODE21. It contains all necessar

node21challenge 11 Jan 15, 2022
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Jake Tae 5 Jan 27, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
Аналитика доходности инвестиционного портфеля в Тинькофф брокере

Аналитика доходности инвестиционного портфеля Тиньков Видео на YouTube Для работы скрипта нужно установить три переменных окружения: export TINKOFF_TO

Alexey Goloburdin 64 Dec 17, 2022
SpineAI Bilsky Grading With Python

SpineAI-Bilsky-Grading SpineAI Paper with Code 📫 Contact Address correspondence to J.T.P.D.H. (e-mail: james_hallinan AT nuhs.edu.sg) Disclaimer This

<a href=[email protected]"> 2 Dec 16, 2021
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
Paddle pit - Rethinking Spatial Dimensions of Vision Transformers

基于Paddle实现PiT ——Rethinking Spatial Dimensions of Vision Transformers,arxiv 官方原版代

Hongtao Wen 4 Jan 15, 2022
[PNAS2021] The neural architecture of language: Integrative modeling converges on predictive processing

The neural architecture of language: Integrative modeling converges on predictive processing Code accompanying the paper The neural architecture of la

Martin Schrimpf 36 Dec 01, 2022