An open-source Kazakh named entity recognition dataset (KazNERD), annotation guidelines, and baseline NER models.

Overview

Kazakh Named Entity Recognition

This repository contains an open-source Kazakh named entity recognition dataset (KazNERD), named entity annotation guidelines (in Kazakh), and NER model training codes (CRF, BiLSTM-CNN-CRF, BERT and XLM-RoBERTa).

  1. KazNERD Corpus
  2. Annotation Guidelines
  3. NER Models
    1. CRF
    2. BiLSTM-CNN-CRF
    3. BERT and XLM-RoBERTa
  4. Citation

1. KazNERD Corpus

KazNERD contains 112,702 sentences, extracted from the television news text, and 136,333 annotations for 25 entity classes. All sentences in the dataset were manually annotated by two native Kazakh-speaking linguists, supervised by an ISSAI researcher. The IOB2 scheme was used for annotation. The dataset, in CoNLL 2002 format, is located here.

2. Annotation Guidelines

The annotation guidelines followed to build KazNERD are located here. The guidelines contain rules for annotating 25 named entity classes and their examples. The guidelines are in the Kazakh language.

3. NER Models

3.1 CRF

Conda Environment Setup for CRF

The CRF-based NER model training codes are based on Python 3.8. To ease the experiment replication experience, we recommend setting up a Conda environment.

conda create --name knerdCRF python=3.8
conda activate knerdCRF
conda install -c anaconda nltk scikit-learn
conda install -c conda-forge sklearn-crfsuite seqeval

Start CRF training

$ cd crf
$ python runCRF_KazNERD.py

3.2 BiLSTM-CNN-CRF

Conda Environment Setup for BiLSTM-CNN-CRF

The BiLSTM-CNN-CRF-based NER model training codes are based on Python 3.8 and PyTorch 1.7.1. To ease the experiment replication experience, we recommend setting up a Conda environment.

conda create --name knerdLSTM python=3.8
conda activate knerdLSTM
# Check https://pytorch.org/get-started/previous-versions/#v171
# to install a PyTorch version suitable for your OS and CUDA
# or feel free to adapt the code to a newer PyTorch version
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch   # we used this version
conda install -c conda-forge tqdm seqeval

Start BiLSTM-CNN-CRF training

$ cd BiLSTM_CNN_CRF
$ bash run_train_p.sh

3.3 BERT and XLM-RoBERTa

Conda Environment Setup for BERT and XLM-RoBERTa

The BERT- and XLM-RoBERTa-based NER models training codes are based on Python 3.8 and PyTorch 1.7.1. To ease the experiment replication experience, we recommend setting up a Conda environment.

conda create --name knerdBERT python=3.8
conda activate knerdBERT
# Check https://pytorch.org/get-started/previous-versions/#v171
# to install a PyTorch version suitable for your OS and CUDA
# or feel free to adapt the code to a newer PyTorch version
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch   # we used this version
conda install -c anaconda numpy
conda install -c conda-forge seqeval
pip install transformers
pip install datasets

Start BERT training

$ cd bert
$ python run_finetune_kaznerd.py bert

Start XLM-RoBERTa training

$ cd bert
$ python run_finetune_kaznerd.py roberta

4. Citation

@misc{yeshpanov2021kaznerd,
      title={KazNERD: Kazakh Named Entity Recognition Dataset}, 
      author={Rustem Yeshpanov and Yerbolat Khassanov and Huseyin Atakan Varol},
      year={2021},
      eprint={2111.13419},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
ISSAI
Institute of Smart Systems and Artificial Intelligence
ISSAI
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
Python implementation of the multistate Bennett acceptance ratio (MBAR)

pymbar Python implementation of the multistate Bennett acceptance ratio (MBAR) method for estimating expectations and free energy differences from equ

Chodera lab // Memorial Sloan Kettering Cancer Center 169 Dec 02, 2022
Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
Dynamic wallpaper generator.

Wiki • About • Installation About This project is a dynamic wallpaper changer. It waits untill you turn on the music, downloads album cover if it's po

3 Sep 18, 2021
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator

CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica

Alek Dimitriev 1 Jul 09, 2022
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
Experiments and examples converting Transformers to ONNX

Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON

Philipp Schmid 4 Dec 24, 2022
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
Set of models for classifcation of 3D volumes

Classification models 3D Zoo - Keras and TF.Keras This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNet

69 Dec 28, 2022
LyaNet: A Lyapunov Framework for Training Neural ODEs

LyaNet: A Lyapunov Framework for Training Neural ODEs Provide the model type--config-name to train and test models configured as those shown in the pa

Ivan Dario Jimenez Rodriguez 21 Nov 21, 2022
An example of time series augmentation methods with Keras

Time Series Augmentation This is a collection of time series data augmentation methods and an example use using Keras. News 2020/04/16: Repository Cre

九州大学 ヒューマンインタフェース研究室 229 Jan 02, 2023
An original implementation of "Noisy Channel Language Model Prompting for Few-Shot Text Classification"

Channel LM Prompting (and beyond) This includes an original implementation of Sewon Min, Mike Lewis, Hannaneh Hajishirzi, Luke Zettlemoyer. "Noisy Cha

Sewon Min 92 Jan 07, 2023
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
VGGFace2-HQ - A high resolution face dataset for face editing purpose

The first open source high resolution dataset for face swapping!!! A high resolution version of VGGFace2 for academic face editing purpose

Naiyuan Liu 232 Dec 29, 2022
Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
Python utility to generate filesystem content for Obsidian.

Security Vault Generator Quickly parse, format, and output common frameworks/content for Obsidian.md. There is a strong focus on MITRE ATT&CK because

Justin Angel 73 Dec 02, 2022
implementation for paper "ShelfNet for fast semantic segmentation"

ShelfNet-lightweight for paper (ShelfNet for fast semantic segmentation) This repo contains implementation of ShelfNet-lightweight models for real-tim

Juntang Zhuang 252 Sep 16, 2022
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

0 Jan 16, 2022