Python bindings and utilities for GeoJSON

Overview

geojson

GitHub Actions Codecov Jazzband

This Python library contains:

Table of Contents

Installation

geojson is compatible with Python 3.6 - 3.9. The recommended way to install is via pip:

pip install geojson

GeoJSON Objects

This library implements all the GeoJSON Objects described in The GeoJSON Format Specification.

All object keys can also be used as attributes.

The objects contained in GeometryCollection and FeatureCollection can be indexed directly.

Point

>>> from geojson import Point

>>> Point((-115.81, 37.24))  # doctest: +ELLIPSIS
{"coordinates": [-115.8..., 37.2...], "type": "Point"}

Visualize the result of the example above here. General information about Point can be found in Section 3.1.2 and Appendix A: Points within The GeoJSON Format Specification.

MultiPoint

>>> from geojson import MultiPoint

>>> MultiPoint([(-155.52, 19.61), (-156.22, 20.74), (-157.97, 21.46)])  # doctest: +ELLIPSIS
{"coordinates": [[-155.5..., 19.6...], [-156.2..., 20.7...], [-157.9..., 21.4...]], "type": "MultiPoint"}

Visualize the result of the example above here. General information about MultiPoint can be found in Section 3.1.3 and Appendix A: MultiPoints within The GeoJSON Format Specification.

LineString

>>> from geojson import LineString

>>> LineString([(8.919, 44.4074), (8.923, 44.4075)])  # doctest: +ELLIPSIS
{"coordinates": [[8.91..., 44.407...], [8.92..., 44.407...]], "type": "LineString"}

Visualize the result of the example above here. General information about LineString can be found in Section 3.1.4 and Appendix A: LineStrings within The GeoJSON Format Specification.

MultiLineString

>>> from geojson import MultiLineString

>>> MultiLineString([
...     [(3.75, 9.25), (-130.95, 1.52)],
...     [(23.15, -34.25), (-1.35, -4.65), (3.45, 77.95)]
... ])  # doctest: +ELLIPSIS
{"coordinates": [[[3.7..., 9.2...], [-130.9..., 1.52...]], [[23.1..., -34.2...], [-1.3..., -4.6...], [3.4..., 77.9...]]], "type": "MultiLineString"}

Visualize the result of the example above here. General information about MultiLineString can be found in Section 3.1.5 and Appendix A: MultiLineStrings within The GeoJSON Format Specification.

Polygon

>>> from geojson import Polygon

>>> # no hole within polygon
>>> Polygon([[(2.38, 57.322), (23.194, -20.28), (-120.43, 19.15), (2.38, 57.322)]])  # doctest: +ELLIPSIS
{"coordinates": [[[2.3..., 57.32...], [23.19..., -20.2...], [-120.4..., 19.1...]]], "type": "Polygon"}

>>> # hole within polygon
>>> Polygon([
...     [(2.38, 57.322), (23.194, -20.28), (-120.43, 19.15), (2.38, 57.322)],
...     [(-5.21, 23.51), (15.21, -10.81), (-20.51, 1.51), (-5.21, 23.51)]
... ])  # doctest: +ELLIPSIS
{"coordinates": [[[2.3..., 57.32...], [23.19..., -20.2...], [-120.4..., 19.1...]], [[-5.2..., 23.5...], [15.2..., -10.8...], [-20.5..., 1.5...], [-5.2..., 23.5...]]], "type": "Polygon"}

Visualize the results of the example above here. General information about Polygon can be found in Section 3.1.6 and Appendix A: Polygons within The GeoJSON Format Specification.

MultiPolygon

>>> from geojson import MultiPolygon

>>> MultiPolygon([
...     ([(3.78, 9.28), (-130.91, 1.52), (35.12, 72.234), (3.78, 9.28)],),
...     ([(23.18, -34.29), (-1.31, -4.61), (3.41, 77.91), (23.18, -34.29)],)
... ])  # doctest: +ELLIPSIS
{"coordinates": [[[[3.7..., 9.2...], [-130.9..., 1.5...], [35.1..., 72.23...]]], [[[23.1..., -34.2...], [-1.3..., -4.6...], [3.4..., 77.9...]]]], "type": "MultiPolygon"}

Visualize the result of the example above here. General information about MultiPolygon can be found in Section 3.1.7 and Appendix A: MultiPolygons within The GeoJSON Format Specification.

GeometryCollection

>>> from geojson import GeometryCollection, Point, LineString

>>> my_point = Point((23.532, -63.12))

>>> my_line = LineString([(-152.62, 51.21), (5.21, 10.69)])

>>> geo_collection = GeometryCollection([my_point, my_line])

>>> geo_collection  # doctest: +ELLIPSIS
{"geometries": [{"coordinates": [23.53..., -63.1...], "type": "Point"}, {"coordinates": [[-152.6..., 51.2...], [5.2..., 10.6...]], "type": "LineString"}], "type": "GeometryCollection"}

>>> geo_collection[1]
{"coordinates": [[-152.62, 51.21], [5.21, 10.69]], "type": "LineString"}

>>> geo_collection[0] == geo_collection.geometries[0]
True

Visualize the result of the example above here. General information about GeometryCollection can be found in Section 3.1.8 and Appendix A: GeometryCollections within The GeoJSON Format Specification.

Feature

>>> from geojson import Feature, Point

>>> my_point = Point((-3.68, 40.41))

>>> Feature(geometry=my_point)  # doctest: +ELLIPSIS
{"geometry": {"coordinates": [-3.68..., 40.4...], "type": "Point"}, "properties": {}, "type": "Feature"}

>>> Feature(geometry=my_point, properties={"country": "Spain"})  # doctest: +ELLIPSIS
{"geometry": {"coordinates": [-3.68..., 40.4...], "type": "Point"}, "properties": {"country": "Spain"}, "type": "Feature"}

>>> Feature(geometry=my_point, id=27)  # doctest: +ELLIPSIS
{"geometry": {"coordinates": [-3.68..., 40.4...], "type": "Point"}, "id": 27, "properties": {}, "type": "Feature"}

Visualize the results of the examples above here. General information about Feature can be found in Section 3.2 within The GeoJSON Format Specification.

FeatureCollection

>>> from geojson import Feature, Point, FeatureCollection

>>> my_feature = Feature(geometry=Point((1.6432, -19.123)))

>>> my_other_feature = Feature(geometry=Point((-80.234, -22.532)))

>>> feature_collection = FeatureCollection([my_feature, my_other_feature])

>>> feature_collection # doctest: +ELLIPSIS
{"features": [{"geometry": {"coordinates": [1.643..., -19.12...], "type": "Point"}, "properties": {}, "type": "Feature"}, {"geometry": {"coordinates": [-80.23..., -22.53...], "type": "Point"}, "properties": {}, "type": "Feature"}], "type": "FeatureCollection"}

>>> feature_collection.errors()
[]

>>> (feature_collection[0] == feature_collection['features'][0], feature_collection[1] == my_other_feature)
(True, True)

Visualize the result of the example above here. General information about FeatureCollection can be found in Section 3.3 within The GeoJSON Format Specification.

GeoJSON encoding/decoding

All of the GeoJSON Objects implemented in this library can be encoded and decoded into raw GeoJSON with the geojson.dump, geojson.dumps, geojson.load, and geojson.loads functions. Note that each of these functions is a wrapper around the core json function with the same name, and will pass through any additional arguments. This allows you to control the JSON formatting or parsing behavior with the underlying core json functions.

>>> import geojson

>>> my_point = geojson.Point((43.24, -1.532))

>>> my_point  # doctest: +ELLIPSIS
{"coordinates": [43.2..., -1.53...], "type": "Point"}

>>> dump = geojson.dumps(my_point, sort_keys=True)

>>> dump  # doctest: +ELLIPSIS
'{"coordinates": [43.2..., -1.53...], "type": "Point"}'

>>> geojson.loads(dump)  # doctest: +ELLIPSIS
{"coordinates": [43.2..., -1.53...], "type": "Point"}

Custom classes

This encoding/decoding functionality shown in the previous can be extended to custom classes using the interface described by the __geo_interface__ Specification.

>>> import geojson

>>> class MyPoint():
...     def __init__(self, x, y):
...         self.x = x
...         self.y = y
...
...     @property
...     def __geo_interface__(self):
...         return {'type': 'Point', 'coordinates': (self.x, self.y)}

>>> point_instance = MyPoint(52.235, -19.234)

>>> geojson.dumps(point_instance, sort_keys=True)  # doctest: +ELLIPSIS
'{"coordinates": [52.23..., -19.23...], "type": "Point"}'

Default and custom precision

GeoJSON Object-based classes in this package have an additional precision attribute which rounds off coordinates to 6 decimal places (roughly 0.1 meters) by default and can be customized per object instance.

>>> from geojson import Point

>>> Point((-115.123412341234, 37.123412341234))  # rounded to 6 decimal places by default
{"coordinates": [-115.123412, 37.123412], "type": "Point"}

>>> Point((-115.12341234, 37.12341234), precision=8)  # rounded to 8 decimal places
{"coordinates": [-115.12341234, 37.12341234], "type": "Point"}

Helpful utilities

coords

geojson.utils.coords yields all coordinate tuples from a geometry or feature object.

>>> import geojson

>>> my_line = LineString([(-152.62, 51.21), (5.21, 10.69)])

>>> my_feature = geojson.Feature(geometry=my_line)

>>> list(geojson.utils.coords(my_feature))  # doctest: +ELLIPSIS
[(-152.62..., 51.21...), (5.21..., 10.69...)]

map_coords

geojson.utils.map_coords maps a function over all coordinate values and returns a geometry of the same type. Useful for scaling a geometry.

>>> import geojson

>>> new_point = geojson.utils.map_coords(lambda x: x/2, geojson.Point((-115.81, 37.24)))

>>> geojson.dumps(new_point, sort_keys=True)  # doctest: +ELLIPSIS
'{"coordinates": [-57.905..., 18.62...], "type": "Point"}'

map_tuples

geojson.utils.map_tuples maps a function over all coordinates and returns a geometry of the same type. Useful for changing coordinate order or applying coordinate transforms.

>>> import geojson

>>> new_point = geojson.utils.map_tuples(lambda c: (c[1], c[0]), geojson.Point((-115.81, 37.24)))

>>> geojson.dumps(new_point, sort_keys=True)  # doctest: +ELLIPSIS
'{"coordinates": [37.24..., -115.81], "type": "Point"}'

map_geometries

geojson.utils.map_geometries maps a function over each geometry in the input.

>>> import geojson

>>> new_point = geojson.utils.map_geometries(lambda g: geojson.MultiPoint([g["coordinates"]]), geojson.GeometryCollection([geojson.Point((-115.81, 37.24))]))

>>> geojson.dumps(new_point, sort_keys=True)
'{"geometries": [{"coordinates": [[-115.81, 37.24]], "type": "MultiPoint"}], "type": "GeometryCollection"}'

validation

is_valid property provides simple validation of GeoJSON objects.

>>> import geojson

>>> obj = geojson.Point((-3.68,40.41,25.14,10.34))
>>> obj.is_valid
False

errors method provides collection of errors when validation GeoJSON objects.

>>> import geojson

>>> obj = geojson.Point((-3.68,40.41,25.14,10.34))
>>> obj.errors()
'a position must have exactly 2 or 3 values'

generate_random

geojson.utils.generate_random yields a geometry type with random data

>>> import geojson

>>> geojson.utils.generate_random("LineString")  # doctest: +ELLIPSIS
{"coordinates": [...], "type": "LineString"}

>>> geojson.utils.generate_random("Polygon")  # doctest: +ELLIPSIS
{"coordinates": [...], "type": "Polygon"}

Development

To build this project, run python setup.py build. To run the unit tests, run python setup.py test. To run the style checks, run flake8 (install flake8 if needed).

Credits

Obtain a GNSS position fix from an 11-millisecond raw GNSS signal snapshot

Obtain a GNSS position fix from an 11-millisecond raw GNSS signal snapshot without any prior knowledge about the position of the receiver and only coarse knowledge about the time.

Jonas Beuchert 2 Nov 17, 2022
Documentation and samples for ArcGIS API for Python

ArcGIS API for Python ArcGIS API for Python is a Python library for working with maps and geospatial data, powered by web GIS. It provides simple and

Esri 1.4k Dec 30, 2022
Platform for building statistical models of cities and regions

UrbanSim UrbanSim is a platform for building statistical models of cities and regions. These models help forecast long-range patterns in real estate d

Urban Data Science Toolkit 419 Dec 30, 2022
Implementation of Trajectory classes and functions built on top of GeoPandas

MovingPandas MovingPandas implements a Trajectory class and corresponding methods based on GeoPandas. Visit movingpandas.org for details! You can run

Anita Graser 897 Jan 01, 2023
Replace MSFS2020's bing map to google map

English verison here 中文 免责声明 本教程提到的方法仅用于研究和学习用途。我不对使用、拓展该教程及方法所造成的任何法律责任和损失负责。 背景 微软模拟飞行2020的地景使用了Bing的卫星地图,然而卫星地图比较老旧,很多地区都是几年前的图设置直接是没有的。这种现象在全球不同地区

hesicong 272 Dec 24, 2022
Manage your XYZ Hub or HERE Data Hub spaces from Python.

XYZ Spaces for Python Manage your XYZ Hub or HERE Data Hub spaces and Interactive Map Layer from Python. FEATURED IN: Online Python Machine Learning C

HERE Technologies 30 Oct 18, 2022
geobeam - adds GIS capabilities to your Apache Beam and Dataflow pipelines.

geobeam adds GIS capabilities to your Apache Beam pipelines. What does geobeam do? geobeam enables you to ingest and analyze massive amounts of geospa

Google Cloud Platform 61 Nov 08, 2022
Summary statistics of geospatial raster datasets based on vector geometries.

rasterstats rasterstats is a Python module for summarizing geospatial raster datasets based on vector geometries. It includes functions for zonal stat

Matthew Perry 437 Dec 23, 2022
A trivia questions about Europe

EUROPE TRIVIA QUIZ IN PYTHON Project Outline Ask user if he / she knows more about Europe. If yes show the Trivia main screen, else show the end Trivi

David Danso 1 Nov 17, 2021
An API built to format given addresses using Python and Flask.

An API built to format given addresses using Python and Flask. About The API returns properly formatted data, i.e. removing duplicate fields, distingu

1 Feb 27, 2022
GebPy is a Python-based, open source tool for the generation of geological data of minerals, rocks and complete lithological sequences.

GebPy is a Python-based, open source tool for the generation of geological data of minerals, rocks and complete lithological sequences. The data can be generated randomly or with respect to user-defi

Maximilian Beeskow 16 Nov 29, 2022
Mmdb-server - An open source fast API server to lookup IP addresses for their geographic location

mmdb-server mmdb-server is an open source fast API server to lookup IP addresses

Alexandre Dulaunoy 67 Nov 25, 2022
Bacon - Band-limited Coordinate Networks for Multiscale Scene Representation

BACON: Band-limited Coordinate Networks for Multiscale Scene Representation Project Page | Video | Paper Official PyTorch implementation of BACON. BAC

Stanford Computational Imaging Lab 144 Dec 29, 2022
Simulation and Parameter Estimation in Geophysics

Simulation and Parameter Estimation in Geophysics - A python package for simulation and gradient based parameter estimation in the context of geophysical applications.

SimPEG 390 Dec 15, 2022
WhiteboxTools Python Frontend

whitebox-python Important Note This repository is related to the WhiteboxTools Python Frontend only. You can report issues to this repo if you have pr

Qiusheng Wu 304 Dec 15, 2022
A modern, geometric typeface by @chrismsimpson (last commit @ 85fa625 Jun 9, 2020 before deletion)

Metropolis A modern, geometric typeface. Influenced by other popular geometric, minimalist sans-serif typefaces of the new millenium. Designed for opt

Darius 183 Dec 25, 2022
Tile Map Service and OGC Tiles API for QGIS Server

Tiles API Add tiles API to QGIS Server Tiles Map Service API OGC Tiles API Tile Map Service API - TMS The TMS API provides these URLs: /tms/? to get i

3Liz 6 Dec 01, 2021
Manipulation and analysis of geometric objects

Shapely Manipulation and analysis of geometric objects in the Cartesian plane. Shapely is a BSD-licensed Python package for manipulation and analysis

3.1k Jan 03, 2023
WIP: extracting Geometry utilities from datacube-core

odc.geo This is still work in progress. This repository contains geometry related code extracted from Open Datacube. For details and motivation see OD

Open Data Cube 34 Jan 09, 2023
Computer Vision in Python

Mahotas Python Computer Vision Library Mahotas is a library of fast computer vision algorithms (all implemented in C++ for speed) operating over numpy

Luis Pedro Coelho 792 Dec 20, 2022