Analysis of Antarctica sequencing samples contaminated with SARS-CoV-2

Overview

Analysis of SARS-CoV-2 reads in sequencing of 2018-2019 Antarctica samples in PRJNA692319

The samples analyzed here are described in this preprint, which is a pre-print by Istvan Csabai and co-workers that describes SARS-CoV-2 reads in samples from Antarctica sequencing in China. I was originally alerted to the pre-print by Carl Zimmer on Dec-23-2021. Istvan Csabai and coworkers subsequently posted a second pre-print that also analyzes the host reads.

Repeating key parts of the analysis

The code in this repo independently repeats some of the analyses.

To run the analysis, build the conda environment in environment.yml and then run the analysis using Snakefile. To do this on the Hutch cluster, using run.bash:

sbatch -c 16 run.bash

The results are placed in the ./results/ subdirectory. Most of the results files are not tracked due to file-size limitations, but the following key files are tracked:

  • results/alignment_counts.csv gives the number of reads aligning to SARS-CoV-2 for each sample. This confirms that three accessions (SRR13441704, SRR13441705, and SRR13441708) have most of the SARS-CoV-2 reads, although a few other samples also have some.
  • results/variant_analysis.csv reports all variants found in the samples relative to Wuhan-Hu-1.
  • results/variant_analysis_to_outgroup.csv reports the variants found in the samples that represent mutations from Wuhan-Hu-1 towards the two closest bat coronavirus relatives, RaTG13 and BANAL-20-52. Note that some of the reads contain three key mutations relative to Wuhan-Hu-1 (C8782T, C18060T, and T28144C) that move the sequence closer to the bat coronavirus relatives. These mutations define one of the two plausible progenitors for all currently known human SARS-CoV-2 sequences (see Kumar et al (2021) and Bloom (2021)).

Archived links after initially hearing about pre-print

I archived the following links on Dec-23-2021 after hearing about the pre-print from Carl Zimmer:

Deletion of some samples from SRA

On Jan-3-2022, I received an e-mail one of the pre-print authors, Istvan Csabai, saying that three of the samples (appearing to be the ones with the most SARS-CoV-2 reads) had been removed from the SRA. He also noted that bioRxiv had refused to publish their pre-print without explanation; the file he attached indicates the submission ID was BIORXIV-2021-472446v1. I confirmed that three of the accessions had indeed been removed from the SRA as shown in the following archived links:

I also e-mailed Richard Sever at bioRxiv to ask why the pre-print was rejected, and explained I had repeated and validated the key findings. Richard Sever said he could not give details about the pre-print review process, but that in the future the authors could appeal if they thought the rejection was unfounded.

Details from Istvan Csabai

On Jan-4-2022, I chatted with Istvan Csabai. He had contacted the authors of the pre-print, and shared their reply to him. The authors had prepped the samples in early 2019, and submitted to Sangon BioTech for sequencing in December, getting the results back in early January.

Second pre-print from Csabai and restoration of deleted files

Istvan Csabai then worked on a second pre-print that analyzed host reads and made various findings, including co-contamination with African green monkey (Vero?) and human DNA. He sent me pre-print drafts on Jan-16-2022 and on Jan-24-2022, and I provided comments on both drafts and agreed to be listed in the Acknowledgments.

On Feb-3-2022, Istvan Csabai told me that the second pre-print had also been rejected from bioRxiv. Because I had previously contacted Richard Sever when I heard the first pre-print was rejected, I suggested Istvan could CC me on an e-mail to Richard Sever appealing the rejection, which he did. Unfortunately, Richard Sever declined the appeal, so instead Istvan posted the pre-print on Resarch Square.

At that point on Feb-3-2022, I also re-checked the three deletion accessions (SRR13441704, SRR13441705, and SRR13441708). To my surprise, all three were now again available by public access. Here are archived links demonstrating that they were again available:

I confirmed that the replaced accessions were identical to the deleted ones.

Inquiry to authors of PRJNA692319

On Feb-8-2022, I e-mailed the Chinese authors of the paper to ask about the sample deletion and restoration. They e-mailed back almost immediately. They confirmed what they had told Istvan: they had sequenced the samples with Sangon Biotech (Shanghai) after extracting the DNA in December 2019 from their samples. The suspect that contamination of the samples happened at Sangon Biotech. They deleted the three most contaminated samples from the Sequence Read Archive. They do not know why the samples were then "un-deleted."

Owner
Jesse Bloom
I research the evolution of viruses and proteins.
Jesse Bloom
Voice of Pajlada with model and weights.

Pajlada TTS Stripped down version of ForwardTacotron (https://github.com/as-ideas/ForwardTacotron) with pretrained weights for Pajlada's (https://gith

6 Sep 03, 2021
Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

Vishal R 1 Nov 16, 2021
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
Code for the ICCV'21 paper "Context-aware Scene Graph Generation with Seq2Seq Transformers"

ICCV'21 Context-aware Scene Graph Generation with Seq2Seq Transformers Authors: Yichao Lu*, Himanshu Rai*, Cheng Chang*, Boris Knyazev†, Guangwei Yu,

Layer6 Labs 37 Dec 18, 2022
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Packt 1.5k Jan 03, 2023
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
Repository of Vision Transformer with Deformable Attention

Vision Transformer with Deformable Attention This repository contains the code for the paper Vision Transformer with Deformable Attention [arXiv]. Int

410 Jan 03, 2023
用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本和PARL(paddle)版本

用强化学习玩合成大西瓜 代码地址:https://github.com/Sharpiless/play-daxigua-using-Reinforcement-Learning 用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本、PARL(paddle)版本和pytorch版本

72 Dec 17, 2022
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
Official PyTorch Implementation for "Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes"

PVDNet: Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes This repository contains the official PyTorch implementatio

Junyong Lee 98 Nov 06, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
Statistical-Rethinking-with-Python-and-PyMC3 - Python/PyMC3 port of the examples in " Statistical Rethinking A Bayesian Course with Examples in R and Stan" by Richard McElreath

Statistical Rethinking with Python and PyMC3 This repository has been deprecated in favour of this one, please check that repository for updates, for

Osvaldo Martin 786 Dec 29, 2022
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
Learning to trade under the reinforcement learning framework

Trading Using Q-Learning In this project, I will present an adaptive learning model to trade a single stock under the reinforcement learning framework

Uirá Caiado 470 Nov 28, 2022
A smart Chat bot that can help to know about corona virus and Make prediction of corona using X-ray.

TRINIT_Hum_kuchh_nahi_karenge_ML01 Document Link https://github.com/Jatin-Goyal-552/TRINIT_Hum_kuchh_nahi_karenge_ML01/blob/main/hum_kuchh_nahi_kareng

JatinGoyal 1 Feb 03, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

RAVE: Realtime Audio Variational autoEncoder Official implementation of RAVE: A variational autoencoder for fast and high-quality neural audio synthes

ACIDS 587 Jan 01, 2023
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Phil Wang 272 Dec 23, 2022
Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Troyanskaya Laboratory 323 Jan 01, 2023
Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"

Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal

Planet AI GmbH 9 May 20, 2022
GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

Xinyan Zhao 29 Dec 26, 2022