CS50's Introduction to Artificial Intelligence Test Scripts

Overview

CS50's Introduction to Artificial Intelligence Test Scripts

🤷‍♂️ What's this? 🤷‍♀️

This repository contains Python scripts to automate tests for most of the CS50’s Introduction to Artificial Intelligence with Python projects.

It does not contain any project solution/spoiler, as per the course's Academic Honesty policy.

Disclaimer

This is a student-initiated project. Passing these test cases does not guarantee that you will receive a full grade from the official CS50 AI's teaching team.

📖 Table of Contents

Lecture Concept Project Test Script Description
Search Breadth First Search Degrees degrees_test.py Run test cases given by problem description and this discussion
Search Minimax Tic-Tac-Toe tictactoe_test.py Let your AI play against itself for 10 rounds
Knowledge Model Checking Knights puzzle_test.py Check the correctness of the 4 puzzle results
Knowledge Knowledge Engineering Minesweeper minesweeper_test.py Check if your AI has ≈90% win rate over 1000 simulations
Uncertainty Bayesian Networks Heredity heredity_test.py Run test cases given by problem description and this discussion
Uncertainty Markov Models PageRank pagerank_test.py Compare the output of the 2 implemented functions
Optimization Constraint Satisfaction Crossword generate_test.py Generate crosswords using all 9 different structure + words combination and a special test case from this discussion
Learning Nearest-Neighbor Classification Shopping shopping_test.py Check the information is parsed correctly and result is within a reasonable range
Learning Reinforcement Learning Nim nim_test.py Check if the AI which moves second has a 100% win rate

🛠️ How to Run Tests

Guide

  1. Make sure you have Python3 installed in your machine. Anything above Python 3.4+ should work.
  2. Install pytest by running pip install pytest in a terminal. More information about pip here.
  3. Make a copy of the test file and paste it in the same folder as the project that you want to test.

    For example, if you want to test your code for degrees.py, make a copy of degrees_test.py in the same folder as your degrees.py and other files that came along with the project, like util.py, large/ and small/.

  4. Navigate to the project folder and run pytest or pytest _test.py in a terminal.

    For example, navigate to degrees/ and run pytest or pytest degrees_test.py.

Example

example

🚩 Useful pytest Flags

  • Run pytest -s to show print statements in the console
  • Run pytest -vv for verbose mode
  • Combine both flags pytest -s -vv for extra verbose mode
  • Run pytest --durations=n to see the n slowest execution time
  • Install pytest-repeat with pip and then run pytest --count n to repeat the test for n times

💻 My Setup

Each test should take less than 30 seconds, depending on Python's I/O and your code efficiency.

  • Windows 10 Home Build 19042
  • Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz
  • Python 3.9.5 64-bit
  • Visual Studio Code w/Pylance (latest release)

🏆 Acknowledgement

Special thanks to these fellow CS50AI classmates who contributed some of the test cases on the Ed discussion site!

  • Ken Walker
  • Naveena A S
  • Ricardo L
Owner
Jet Kan
Tutor and Computer Science Undergraduate, National University of Singapore (NUS)
Jet Kan
[WACV 2022] Contextual Gradient Scaling for Few-Shot Learning

CxGrad - Official PyTorch Implementation Contextual Gradient Scaling for Few-Shot Learning Sanghyuk Lee, Seunghyun Lee, and Byung Cheol Song In WACV 2

Sanghyuk Lee 4 Dec 05, 2022
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
Processed, version controlled history of Minecraft's generated data and assets

mcmeta Processed, version controlled history of Minecraft's generated data and assets Repository structure Each of the following branches has a commit

Misode 75 Dec 28, 2022
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
Arbitrary Distribution Modeling with Censorship in Real Time 59 2 60 3 Bidding Advertising for KDD'21

Arbitrary_Distribution_Modeling This repo implements the Neighborhood Likelihood Loss (NLL) and Arbitrary Distribution Modeling (ADM, with Interacting

7 Jan 03, 2023
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

WeiYang 798 Jan 01, 2023
phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

Mathieu Fourment 2 Sep 01, 2022
Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control

Unsupervised Learning of Visual 3D Keypoints for Control [Project Website] [Paper] Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2 1UC Berkeley 2Carnegie

Boyuan Chen 34 Jul 22, 2022
Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Oral)

CMT Code for paper Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Best Paper Award) [Paper] [Site] Directory Struc

Zhaokai Wang 198 Dec 27, 2022
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in

73 Nov 30, 2022
This is a repository for a semantic segmentation inference API using the OpenVINO toolkit

BMW-IntelOpenVINO-Segmentation-Inference-API This is a repository for a semantic segmentation inference API using the OpenVINO toolkit. It's supported

BMW TechOffice MUNICH 34 Nov 24, 2022
A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Yasmeen Brain 10 Oct 06, 2022
A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

上山打老虎 9 Jun 23, 2022
Fast Scattering Transform with CuPy/PyTorch

Announcement 11/18 This package is no longer supported. We have now released kymatio: http://www.kymat.io/ , https://github.com/kymatio/kymatio which

Edouard Oyallon 289 Dec 07, 2022
"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction" (CVPRW 2022) & (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)

MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (CVPRW 2022) Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Z

Yuanhao Cai 274 Jan 05, 2023
From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.

Hengrui Zhang 44 Nov 27, 2022
code for generating data set ES-ImageNet with corresponding training code

es-imagenet-master code for generating data set ES-ImageNet with corresponding training code dataset generator some codes of ODG algorithm The variabl

Ordinarabbit 18 Dec 25, 2022
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

Ayushman Dash 93 Aug 04, 2022