Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems.

Overview

Documentation Status

Persine, the Persona Engine

Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems. It has a simple interface and encourages reproducible results. You tell Persine to drive around YouTube and it gives back a spreadsheet of what else YouTube suggests you watch!

Persine => Pers[ona Eng]ine

For example!

People have suggested that if you watch a few lightly political videos, YouTube starts suggesting more and more extreme content – but does it really?

The theory is difficult to test since it involves a lot of boring clicking and YouTube already knows what you usually watch. Persine to the rescue!

  1. Persine starts a new fresh-as-snow Chrome
  2. You provide a list of videos to watch and buttons to click (like, dislike, "next up" etc)
  3. As it watches and clicks more and more, YouTube customizes and customizes
  4. When you're all done, Persine will save your winding path and the video/playlist/channel recommendations to nice neat CSV files.

Beyond analysis, these files can be used to repeat the experiment again later, seeing if recommendations change by time, location, user history, etc.

If you didn't quite get enough data, don't worry – you can resume your exploration later, picking up right where you left off. Since each "persona" is based on Chrome profiles, all your cookies and history will be safely stored until your next run.

An actual example

See Persine in action on Google Colab.

Includes a few examples for analysis, too.

Installation

pip install persine

Persine will automatically install Selenium and BeautifulSoup for browsing/scraping, pandas for data analysis, and pillow for processing screenshots.

You will need to manually install chromedriver to allow Selenium to control Chrome. See details here

Quickstart

In this example, we start a new session by visiting a YouTube video and clicking the "next up" video three times to see where it leads us. We then save the results for later analysis.

from persine import PersonaEngine

engine = PersonaEngine(headless=False)

with engine.persona() as persona:
    persona.run("https://www.youtube.com/watch?v=hZw23sWlyG0")
    persona.run("youtube:next_up#3")
    persona.history.to_csv("history.csv")
    persona.recommendations.to_csv("recs.csv")

We turn off headless mode because it's fun to watch!

More examples, more features, more everything

Find the complete documentation here

Owner
Jonathan Soma
baby data journo wrangler @ledeprogram + @littlecolumns, cat wrangler @cat-republic
Jonathan Soma
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
Detecting Beneficial Feature Interactions for Recommender Systems, AAAI 2021

Detecting Beneficial Feature Interactions for Recommender Systems (L0-SIGN) This is our implementation for the paper: Su, Y., Zhang, R., Erfani, S., &

26 Nov 22, 2022
This is our Tensorflow implementation for "Graph-based Embedding Smoothing for Sequential Recommendation" (GES) (TKDE, 2021).

Graph-based Embedding Smoothing (GES) This is our Tensorflow implementation for the paper: Tianyu Zhu, Leilei Sun, and Guoqing Chen. "Graph-based Embe

Tianyu Zhu 15 Nov 29, 2022
A movie recommender which recommends the movies belonging to the genre that user has liked the most.

Content-Based-Movie-Recommender-System This model relies on the similarity of the items being recommended. (I have used Pandas and Numpy. However othe

Srinivasan K 0 Mar 31, 2022
Self-supervised Graph Learning for Recommendation

SGL This is our Tensorflow implementation for our SIGIR 2021 paper: Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,and Xing

151 Dec 20, 2022
Collaborative variational bandwidth auto-encoder (VBAE) for recommender systems.

Collaborative Variational Bandwidth Auto-encoder The codes are associated with the following paper: Collaborative Variational Bandwidth Auto-encoder f

Yaochen Zhu 14 Dec 11, 2022
RecSim NG: Toward Principled Uncertainty Modeling for Recommender Ecosystems

RecSim NG, a probabilistic platform for multi-agent recommender systems simulation. RecSimNG is a scalable, modular, differentiable simulator implemented in Edward2 and TensorFlow. It offers: a power

Google Research 110 Dec 16, 2022
E-Commerce recommender demo with real-time data and a graph database

🔍 E-Commerce recommender demo 🔍 This is a simple stream setup that uses Memgraph to ingest real-time data from a simulated online store. Data is str

g-despot 3 Feb 23, 2022
A library of metrics for evaluating recommender systems

recmetrics A python library of evalulation metrics and diagnostic tools for recommender systems. **This library is activly maintained. My goal is to c

Claire Longo 458 Jan 06, 2023
Use Jupyter Notebooks to demonstrate how to build a Recommender with Apache Spark & Elasticsearch

Recommendation engines are one of the most well known, widely used and highest value use cases for applying machine learning. Despite this, while there are many resources available for the basics of

International Business Machines 793 Dec 18, 2022
Group-Buying Recommendation for Social E-Commerce

Group-Buying Recommendation for Social E-Commerce This is the official implementation of the paper Group-Buying Recommendation for Social E-Commerce (

Jun Zhang 37 Nov 28, 2022
A TensorFlow recommendation algorithm and framework in Python.

TensorRec A TensorFlow recommendation algorithm and framework in Python. NOTE: TensorRec is not under active development TensorRec will not be receivi

James Kirk 1.2k Jan 04, 2023
EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON

exemplo-de-sistema-especialista EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON Resumo O objetivo de auxiliar o usuário na escolha

Josue Lopes 3 Aug 31, 2021
A Library for Field-aware Factorization Machines

Table of Contents ================= - What is LIBFFM - Overfitting and Early Stopping - Installation - Data Format - Command Line Usage - Examples -

1.6k Dec 05, 2022
Deep recommender models using PyTorch.

Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various poin

Maciej Kula 2.8k Dec 29, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 43 Jan 04, 2023
6002project-rl - An implemention of offline RL on recommender system

An implemention of offline RL on recommender system @author: misajie @update: 20

Tzay Lee 3 May 24, 2022
Learning Fair Representations for Recommendation: A Graph-based Perspective, WWW2021

FairGo WWW2021 Learning Fair Representations for Recommendation: A Graph-based Perspective As a key application of artificial intelligence, recommende

lei 39 Oct 26, 2022
NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs.

NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in

420 Jan 04, 2023
A framework for large scale recommendation algorithms.

A framework for large scale recommendation algorithms.

Alibaba Group - PAI 880 Jan 03, 2023