An Efficient and Effective Framework for Session-based Social Recommendation

Overview

SEFrame

This repository contains the code for the paper "An Efficient and Effective Framework for Session-based Social Recommendation".

Requirements

  • Python 3.8
  • CUDA 10.2
  • PyTorch 1.7.1
  • DGL 0.5.3
  • NumPy 1.19.2
  • Pandas 1.1.3

Usage

  1. Install all the requirements.

  2. Download the datasets:

  3. Create a folder called datasets and extract the raw data files to the folder.
    The folder should include the following files for each dataset:

    • Gowalla: loc-gowalla_totalCheckins.txt and loc-gowalla_edges.txt
    • Delicious: user_taggedbookmarks-timestamps.dat and user_contacts-timestamps.dat
    • Foursquare: dataset_WWW_Checkins_anonymized.txt and dataset_WWW_friendship_new.txt
  4. Preprocess the datasets using the Python script preprocess.py.
    For example, to preprocess the Gowalla dataset, run the following command:

    python preprocess.py --dataset gowalla

    The above command will create a folder datasets/gowalla to store the preprocessed data files.
    Replace gowalla with delicious or foursquare to preprocess other datasets.

    To see the detailed usage of preprocess.py, run the following command:

    python preprocess.py -h
  5. Train and evaluate a model using the Python script run.py.
    For example, to train and evaluate the model NARM on the Gowalla dataset, run the following command:

    python run.py --model NARM --dataset-dir datasets/gowalla

    Other available models are NextItNet, STAMP, SRGNN, SSRM, SNARM, SNextItNet, SSTAMP, SSRGNN, SSSRM, DGRec, and SERec.
    You can also see all the available models in the srs/models folder.

    To see the detailed usage of run.py, run the following command:

    python run.py -h

Dataset Format

You can train the models using your datasets. Each dataset should contain the following files:

  • stats.txt: A TSV file containing three fields, num_users, num_items, and max_len (the maximum length of sessions). The first row is the header and the second row contains the values.

  • train.txt: A TSV file containing all training sessions, where each session has three fileds, namely, sessionId, userId, and items. Both sessionId and userId should be integers. A session with a larger sessionId means that it was generated later (this requirement can be ignored if the used models do not care about the order of sessions, i.e., when the models are not DGRec). The userId should be in the range of [0, num_users). The items field of each session contains the clicked items in the session which is a sequence of item IDs separated by commas. The item IDs should be in the range of [0, num_items).

  • valid.txt and test.txt: TSV files containing all validation and test sessions, respectively. Both files have the same format as train.txt. Note that the session IDs in valid.txt and test.txt should be larger than those in train.txt.

  • edges.txt: A TSV file containing the relations in the social network. It has two columns, follower and followee. Both columns contain the user IDs.

You can see datasets/delicious for an example of the dataset.

Citation

If you use this code for your research, please cite our paper:

@inproceedings{chen2021seframe,
   title="An Efficient and Effective Framework for Session-based Social Recommendation",
   author="Tianwen {Chen} and Raymond Chi-Wing {Wong}",
   booktitle="Proceedings of the Fourteenth ACM International Conference on Web Search and Data Mining (WSDM '21)",
   pages="400--408",
   year="2021"
}
Owner
Tianwen CHEN
A CS PhD Student in HKUST
Tianwen CHEN
Movies/TV Recommender

recommender Movies/TV Recommender. Recommends Movies, TV Shows, Actors, Directors, Writers. Setup Create file API_KEY and paste your TMDB API key in i

Aviem Zur 3 Apr 22, 2022
Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks

Bi-TGCF Tensorflow Implementation of BiTGCF: Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks. in CIKM20

17 Nov 30, 2022
RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation

RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation Pytorch based implemention of Relational Temporal

28 Dec 28, 2022
Bert4rec for news Recommendation

News-Recommendation-system-using-Bert4Rec-model Bert4rec for news Recommendation

saran pandian 2 Feb 04, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs.

NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in

420 Jan 04, 2023
Bundle Graph Convolutional Network

Bundle Graph Convolutional Network This is our Pytorch implementation for the paper: Jianxin Chang, Chen Gao, Xiangnan He, Depeng Jin and Yong Li. Bun

55 Dec 25, 2022
Real time recommendation playground

concierge A continuous learning collaborative filter1 deployed with a light web server2. Distributed updates are live (real time pubsub + delta traini

Mark Essel 16 Nov 07, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 43 Jan 04, 2023
This is our Tensorflow implementation for "Graph-based Embedding Smoothing for Sequential Recommendation" (GES) (TKDE, 2021).

Graph-based Embedding Smoothing (GES) This is our Tensorflow implementation for the paper: Tianyu Zhu, Leilei Sun, and Guoqing Chen. "Graph-based Embe

Tianyu Zhu 15 Nov 29, 2022
A Library for Field-aware Factorization Machines

Table of Contents ================= - What is LIBFFM - Overfitting and Early Stopping - Installation - Data Format - Command Line Usage - Examples -

1.6k Dec 05, 2022
The implementation of the submitted paper "Deep Multi-Behaviors Graph Network for Voucher Redemption Rate Prediction" in SIGKDD 2021 Applied Data Science Track.

DMBGN: Deep Multi-Behaviors Graph Networks for Voucher Redemption Rate Prediction The implementation of the accepted paper "Deep Multi-Behaviors Graph

10 Jul 12, 2022
Recommender systems are the systems that are designed to recommend things to the user based on many different factors

Recommender systems are the systems that are designed to recommend things to the user based on many different factors. The recommender system deals with a large volume of information present by filte

Happy N. Monday 3 Feb 15, 2022
Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks

SR-HGNN ICDM-2020 《Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks》 Environments python 3.8 pytorch-1.6 DGL 0.5.

xhc 9 Nov 12, 2022
Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems.

Persine, the Persona Engine Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems. It has a simple interface a

Jonathan Soma 87 Nov 29, 2022
A library of Recommender Systems

A library of Recommender Systems This repository provides a summary of our research on Recommender Systems. It includes our code base on different rec

MilaGraph 980 Jan 05, 2023
Price-aware Recommendation with Graph Convolutional Networks,

PUP This is the official implementation of our ICDE'20 paper: Yu Zheng, Chen Gao, Xiangnan He, Yong Li, Depeng Jin, Price-aware Recommendation with Gr

S4rawBer2y 3 Oct 30, 2022
Code for MB-GMN, SIGIR 2021

MB-GMN Code for MB-GMN, SIGIR 2021 For Beibei data, run python .\labcode.py For Tmall data, run python .\labcode.py --data tmall --rank 2 For IJCAI

32 Dec 04, 2022
EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON

exemplo-de-sistema-especialista EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON Resumo O objetivo de auxiliar o usuário na escolha

Josue Lopes 3 Aug 31, 2021
Graph Neural Networks for Recommender Systems

This repository contains code to train and test GNN models for recommendation, mainly using the Deep Graph Library (DGL).

217 Jan 04, 2023