A movie recommender which recommends the movies belonging to the genre that user has liked the most.
Overview
Owner
Srinivasan K
Detecting Beneficial Feature Interactions for Recommender Systems, AAAI 2021
Detecting Beneficial Feature Interactions for Recommender Systems (L0-SIGN) This is our implementation for the paper: Su, Y., Zhang, R., Erfani, S., &
Hierarchical Fashion Graph Network for Personalized Outfit Recommendation, SIGIR 2020
hierarchical_fashion_graph_network This is our Tensorflow implementation for the paper: Xingchen Li, Xiang Wang, Xiangnan He, Long Chen, Jun Xiao, and
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)
QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and newly state-of-the-art recommendation models are implemented.
Graph Neural Network based Social Recommendation Model. SIGIR2019.
Basic Information: This code is released for the papers: Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang and Meng Wang. A Neural Influence Dif
Deep recommender models using PyTorch.
Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various poin
A movie recommender which recommends the movies belonging to the genre that user has liked the most.
Content-Based-Movie-Recommender-System This model relies on the similarity of the items being recommended. (I have used Pandas and Numpy. However othe
A recommendation system for suggesting new books given similar books.
Book Recommendation System A recommendation system for suggesting new books given similar books. Datasets Dataset Kaggle Dataset Notebooks goodreads-E
[ICDMW 2020] Code and dataset for "DGTN: Dual-channel Graph Transition Network for Session-based Recommendation"
DGTN: Dual-channel Graph Transition Network for Session-based Recommendation This repository contains PyTorch Implementation of ICDMW 2020 (NeuRec @ I
NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs.
NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in
RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation
RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation Pytorch based implemention of Relational Temporal
Recommender System Papers
Included Conferences: SIGIR 2020, SIGKDD 2020, RecSys 2020, CIKM 2020, AAAI 2021, WSDM 2021, WWW 2021
Pytorch domain library for recommendation systems
TorchRec (Experimental Release) TorchRec is a PyTorch domain library built to provide common sparsity & parallelism primitives needed for large-scale
Movie Recommender System
Movie-Recommender-System Movie-Recommender-System is a web application using which a user can select his/her watched movie from list and system will r
Code for KHGT model, AAAI2021
KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi
Plex-recommender - Get movie recommendations based on your current PleX library
plex-recommender Description: Get movie/tv recommendations based on your current
EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON
exemplo-de-sistema-especialista EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON Resumo O objetivo de auxiliar o usuário na escolha
Knowledge-aware Coupled Graph Neural Network for Social Recommendation
KCGN AAAI-2021 《Knowledge-aware Coupled Graph Neural Network for Social Recommendation》 Environments python 3.8 pytorch-1.6 DGL 0.5.3 (https://github.
Spotify API Recommnder System
This project will access your last listened songs on Spotify using its API, then it will request the user to select 5 favorite songs in that list, on which the API will proceed to make 50 recommendat
ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms
ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms, including but not limited to click-through-rate (CTR) prediction, learning-to-ranking (LTR), and Matrix/Tensor Embeddi
Elliot is a comprehensive recommendation framework that analyzes the recommendation problem from the researcher's perspective.
Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation