Hg002-qc-snakemake - HG002 QC Snakemake

Overview

HG002 QC Snakemake

To Run

Resources and data specified within snakefile (hg002QC.smk) for simplicity. Tested with snakemake v6.15.3.

Warning: Several steps of this workflow require minimum coverage. It's recommended that this workflow not be run when yield in base pairs is insufficient to produceat least 15X coverage (i.e. yield/3099922541 >= 15x).

# clone repo
git clone --recursive https://github.com/PacificBiosciences/pb-human-wgs-workflow-snakemake.git workflow

# make necessary directories
mkdir cluster_logs

# create conda environment
conda env create --file workflow/environment.yaml

# activate conda environment
conda activate pb-human-wgs-workflow

# submit job
sbatch workflow/run_hg002QC.sh

Plots

A list of important stats from target files that would be good for plotting.

targets = [f"conditions/{condition}/{filename}"
                    for condition in ubam_dict.keys()
                    for filename in ["smrtcell_stats/all_movies.read_length_and_quality.tsv",
                                    "hifiasm/asm.p_ctg.fasta.stats.txt",
                                    "hifiasm/asm.a_ctg.fasta.stats.txt",
                                    "hifiasm/asm.p_ctg.qv.txt",
                                    "hifiasm/asm.a_ctg.qv.txt",
                                    "truvari/summary.txt",
                                    "pbsv/all_chroms.pbsv.vcf.gz",
                                    "deepvariant/deepvariant.vcf.stats.txt",
                                    "whatshap/deepvariant.phased.tsv",
                                    "happy/all.summary.csv",
                                    "happy/all.extended.csv",
                                    "happy/cmrg.summary.csv",
                                    "happy/cmrg.extended.csv",
                                    "mosdepth/coverage.mosdepth.summary.txt",
                                    "mosdepth/mosdepth.M2_ratio.txt",
                                    "mosdepth/gc_coverage.summary.txt",
                                    "mosdepth/coverage.thresholds.summary.txt"]]
  • smrtcell_stats/all_movies.read_length_and_quality.tsv
    • outputs 3 columns (read name, read length, read quality)
    • boxplots of read length and quality
  • hifiasm/asm.p_ctg.fasta.stats.txt (primary) + hifiasm/asm.a_ctg.fasta.stats.txt (alternate)
    • all stats below should be collected for both primary (p_ctg) and alternate (p_atg) assemblies
    • assembly size awk '$1=="SZ" {print $2}' <filename>
    • auN (area under the curve) awk '$1=="AU" {print $2}' <filename>
    • NGx - line plot of NG10 through NG90 awk '$1=="NL" {print $2 $3}' <filename> ($2 is x-axis, $3 y-axis) like this: example plot
  • hifiasm/asm.p_ctg.qv.txt + hifiasm/asm.a_ctg.qv.txt
    • adjusted assembly quality awk '$1=="QV" {print $3}' <filename> for primary and alternate assemblies
  • truvari/truvari.summary.txt
    • structural variant recall jq .recall <filename>
    • structural variant precision jq .precision <filename>
    • structural variant f1 jq .f1 <filename>
    • number of calls jq '."call cnt"' <filename>
    • FP jq .FP <filename>
    • TP-call jq .TP-call <filename>
    • FN jq .FN <filename>
    • TP-base jq .TP-base <filename>
  • pbsv/all_chroms.pbsv.vcf.gz
    • counts of each type of variant bcftools query -i 'FILTER=="PASS"' -f '%INFO/SVTYPE\n' <filename> | awk '{A[$1]++}END{for(i in A)print i,A[i]}'
    • can also do size distributions of indels bcftools query -i 'FILTER=="PASS" && (INFO/SVTYPE=="INS" | INFO/SVTYPE=="DEL")' -f '%INFO/SVTYPE\t%INFO/SVLEN\n' <filename>
  • deepvariant/deepvariant.vcf.stats.txt
    • several values in lines starting with 'SN' awk '$1=="SN"' <filename>
      • number of SNPS
      • number INDELs
      • number of multi-allelic sites
      • number of multi-allelic SNP sites
    • ratio of transitions to transversions awk '$1=="TSTV" {print$5}' <filename>
    • can monitor substitution types awk '$1=="ST"' <filename>
    • SNP heterozygous : non-ref homozygous ratio awk '$1=="PSC" {print $6/$5}' <filename>
    • SNP transitions : transversions awk '$1=="PSC" {print $7/$8}' <filename>
    • Number of heterozygous insertions : number of homozgyous alt insertions awk '$1=="PSI" {print $8/$10}' <filename>
    • Number of heterozygous deletions : number of homozgyous alt deletions awk '$1=="PSI" {print $9/$11}' <filename>
    • Total INDEL heterozygous:homozygous ratio awk '$1=="PSI" {print ($8+$9)/($10+$11)}' <filename>8+9:10+11 indel het:hom)
  • whatshap/deepvariant.phased.tsv
    • phase block N50 awk '$2=="ALL" {print $22}' <filename>
    • bp_per_block_sum (total number of phased bases) awk '$2=="ALL" {print $18}' <filename>
  • whatshap/deepvariant.phased.blocklist
    • calculate phase block size (to - from) and reverse order them (awk 'NR>1 {print $5-$4}' <filename> |sort -nr), then plot as cumulative line graph like for assembly, N_0 to N90 example plot
  • happy/all.summary.csv + happy/cmrg.summary.csv
    • stats should be collected for all variants and cmrg challenging medically relevant genes
      • SNP recall awk -F, '$1=="SNP" && $2=="PASS" {print $10}' <filename>
      • SNP precision awk -F, '$1=="SNP" && $2=="PASS" {print $11}' <filename>
      • SNP F1 awk -F, '$1=="SNP" && $2=="PASS" {print $13}' <filename>
      • INDEL recall awk -F, '$1=="INDEL" && $2=="PASS" {print $10}' <filename>
      • INDEL precision awk -F, '$1=="INDEL" && $2=="PASS" {print $11}' <filename>
      • INDEL F1 awk -F, '$1=="INDEL" && $2=="PASS" {print $13}' <filename>
  • happy/all.extended.csv + happy/cmrg.extended.csv
    • there are many stratifications that can be examined, and Aaron Wenger might have opinionso n which are most important. The below commands are just for one stratification "GRCh38_lowmappabilityall.bed.gz".
    • SNP GRCh38_lowmappabilityall recall awk -F, '$1=="SNP" && $2=="*" && $3=="GRCh38_lowmappabilityall.bed.gz" && $4=="PASS" {print $8}' <filename>
    • SNP GRCh38_lowmappabilityall precision awk -F, '$1=="SNP" && $2=="*" && $3=="GRCh38_lowmappabilityall.bed.gz" && $4=="PASS" {print $9}' <filename>
    • SNP GRCh38_lowmappabilityall F1 awk -F, '$1=="SNP" && $2=="*" && $3=="GRCh38_lowmappabilityall.bed.gz" && $4=="PASS" {print $11}' <filename>
    • INDEL GRCh38_lowmappabilityall recall awk -F, '$1=="INDEL" && $2=="*" && $3=="GRCh38_lowmappabilityall.bed.gz" && $4=="PASS" {print $8}' <filename>
    • INDEL GRCh38_lowmappabilityall precision awk -F, '$1=="INDEL" && $2=="*" && $3=="GRCh38_lowmappabilityall.bed.gz" && $4=="PASS" {print $9}' <filename>
    • INDEL GRCh38_lowmappabilityall F1 awk -F, '$1=="INDEL" && $2=="*" && $3=="GRCh38_lowmappabilityall.bed.gz" && $4=="PASS" {print $11}' <filename>
  • mosdepth/coverage.mosdepth.summary.txt
    • mean aligned coverage in "coverage.mosdepth.summary.txt" - 4th column of final row, can grep 'total_region'
  • mosdepth/mosdepth.M2_ratio.txt
    • outputs single value: ratio of chr2 coverage to chrM coverage
    • bar chart of m2 ratio
  • mosdepth/gc_coverage.summary.txt
    • outputs 5 columns: gc percentage bin, q1 , median , q3 , count
    • q1, median, q3 columns are statistics for coverage at different gc percentages (e.g. median cover at 30% GC)
    • "count" refers to # of 500 bp windows that fall in that bin
    • can pick a couple of key GC coverage bins and make box plots out of them
  • mosdepth/coverage.thresholds.summary.txt
    • outputs 10 columns corresponding to % of genome sequenced to minimum coverage depths (1X - 10X)
    • maybe a line chart comparing the different coverage thresholds among conditions
Owner
Juniper A. Lake
Bioinformatics Scientist
Juniper A. Lake
pipeline for migrating lichess data into postgresql

How Long Does It Take Ordinary People To "Get Good" At Chess? TL;DR: According to 5.5 years of data from 2.3 million players and 450 million games, mo

Joseph Wong 182 Nov 11, 2022
Implementation in Python of the reliability measures such as Omega.

reliabiliPy Summary Simple implementation in Python of the [reliability](https://en.wikipedia.org/wiki/Reliability_(statistics) measures for surveys:

Rafael Valero Fernández 2 Apr 27, 2022
A collection of robust and fast processing tools for parsing and analyzing web archive data.

ChatNoir Resiliparse A collection of robust and fast processing tools for parsing and analyzing web archive data. Resiliparse is part of the ChatNoir

ChatNoir 24 Nov 29, 2022
Feature engineering and machine learning: together at last

Feature engineering and machine learning: together at last! Lambdo is a workflow engine which significantly simplifies data analysis by unifying featu

Alexandr Savinov 14 Sep 15, 2022
Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Débora Mendes de Azevedo 1 Feb 03, 2022
Demonstrate a Dataflow pipeline that saves data from an API into BigQuery table

Overview dataflow-mvp provides a basic example pipeline that pulls data from an API and writes it to a BigQuery table using GCP's Dataflow (i.e., Apac

Chris Carbonell 1 Dec 03, 2021
Basis Set Format Converter

Basis Set Format Converter Repository for the online tool that allows you to enter a basis set in the form of text input for a variety of Quantum Chem

Manas Sharma 3 Jun 27, 2022
pyETT: Python library for Eleven VR Table Tennis data

pyETT: Python library for Eleven VR Table Tennis data Documentation Documentation for pyETT is located at https://pyett.readthedocs.io/. Installation

Tharsis Souza 5 Nov 19, 2022
4CAT: Capture and Analysis Toolkit

4CAT: Capture and Analysis Toolkit 4CAT is a research tool that can be used to analyse and process data from online social platforms. Its goal is to m

Digital Methods Initiative 147 Dec 20, 2022
Python data processing, analysis, visualization, and data operations

Python This is a Python data processing, analysis, visualization and data operations of the source code warehouse, book ISBN: 9787115527592 Descriptio

FangWei 1 Jan 16, 2022
Catalogue data - A Python Scripts to prepare catalogue data

catalogue_data Scripts to prepare catalogue data. Setup Clone this repo. Install

BigScience Workshop 3 Mar 03, 2022
Picka: A Python module for data generation and randomization.

Picka: A Python module for data generation and randomization. Author: Anthony Long Version: 1.0.1 - Fixed the broken image stuff. Whoops What is Picka

Anthony 108 Nov 30, 2021
A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

48 Dec 21, 2022
Display the behaviour of a realtime program with a scope or logic analyser.

1. A monitor for realtime MicroPython code This library provides a means of examining the behaviour of a running system. It was initially designed to

Peter Hinch 17 Dec 05, 2022
Yet Another Workflow Parser for SecurityHub

YAWPS Yet Another Workflow Parser for SecurityHub "Screaming pepper" by Rum Bucolic Ape is licensed with CC BY-ND 2.0. To view a copy of this license,

myoung34 8 Dec 22, 2022
Probabilistic reasoning and statistical analysis in TensorFlow

TensorFlow Probability TensorFlow Probability is a library for probabilistic reasoning and statistical analysis in TensorFlow. As part of the TensorFl

3.8k Jan 05, 2023
A data structure that extends pyspark.sql.DataFrame with metadata information.

MetaFrame A data structure that extends pyspark.sql.DataFrame with metadata info

Invent Analytics 8 Feb 15, 2022
Python for Data Analysis, 2nd Edition

Python for Data Analysis, 2nd Edition Materials and IPython notebooks for "Python for Data Analysis" by Wes McKinney, published by O'Reilly Media Buy

Wes McKinney 18.6k Jan 08, 2023
a tool that compiles a csv of all h1 program stats

h1stats - h1 Program Stats Scraper This python3 script will call out to HackerOne's graphql API and scrape all currently active programs for informati

Evan 40 Oct 27, 2022
ped-crash-techvol: Texas Ped Crash Tech Volume Pack

ped-crash-techvol: Texas Ped Crash Tech Volume Pack In conjunction with the Final Report "Identifying Risk Factors that Lead to Increase in Fatal Pede

Network Modeling Center; Center for Transportation Research; The University of Texas at Austin 2 Sep 28, 2022