Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

Related tags

Deep LearningDSBF
Overview

DSBF

Introduction

This repository contains the implementation code for paper:

Domain-Specific Bias Filtering for Single Labeled Domain Generalization

Junkun Yuan, Xu Ma, Defang Chen, Kun Kuang, Fei Wu, Lanfen Lin

arXiv preprint, 2021

[arXiv]

Brief Abstract for the Paper


Domain generalization (DG) utilizes multiple labeled source datasets to train a generalizable model for unseen target domains. However, due to expensive annotation costs, the requirements of labeling all the source data are hard to be met in real-world applications.

We investigate a Single Labeled Domain Generalization (SLDG) task with only one source domain being labeled, which is more practical and challenging than the Conventional Domain Generalization (CDG). A major obstacle in the SLDG task is the discriminability-generalization bias: discriminative information in the labeled source dataset may contain domain-specific bias, constraining the generalization of the trained model.

To tackle this challenging task, we propose Domain-Specific Bias Filtering (DSBF), which initializes a discriminative model with the labeled source data and filters out its domain-specific bias with the unlabeled source data for generalization improvement. We divide the filtering process into: (1) Feature extractor debiasing using k-means clustering-based semantic feature re-extraction; and (2) Classifier calibrating using attention-guided semantic feature projection.

Requirements

You may need to build suitable Python environment by installing the following packages (Anaconda is recommended).

  • python 3.6
  • pytorch 1.7.1 (with cuda 11.0 and cudnn 8.0)
  • torchvision 0.8.2
  • tensorboardx 2.1
  • numpy 1.19

Data Preparation

We list the adopted datasets in the following.

Datasets Download link
PACS [1] https://dali-dl.github.io/project_iccv2017.html
Office-Home [2] https://www.hemanthdv.org/officeHomeDataset.html

Please note:

  • Although these datasets are open-sourced, you may need to have permission to use the datasets under the datasets' license.
  • If you're a dataset owner and do not want your dataset to be included here, please get in touch with us via a GitHub issue. Thanks!

Usage

  1. Prepare the datasets.
  2. Update the .txt files under folder "DSBF/dataset/pthList/" with your dataset path.
  3. Run the code with command:
nohup sh run.sh > run.txt 2>&1 &
  1. Check results in DSBF/dataset-task-target-data.txt.

Citation

If you find our code or idea useful for your research, please cite our work.

@article{yuan2021domain,
  title={Domain-Specific Bias Filtering for Single Labeled Domain Generalization},
  author={Yuan, Junkun and Ma, Xu and Chen, Defang and Kuang, Kun and Wu, Fei and Lin, Lanfen},
  journal={arXiv preprint arXiv:2110.00726},
  year={2021}
}

Contact

If you have any questions, feel free to contact us through email ([email protected]) or GitHub issues. Thanks!

References

[1] Li, Da, et al. "Deeper, broader and artier domain generalization." Proceedings of the IEEE international conference on computer vision. 2017.

[2] Venkateswara, Hemanth, et al. "Deep hashing network for unsupervised domain adaptation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

Owner
ScottYuan
CS PhD student.
ScottYuan
Polynomial-time Meta-Interpretive Learning

Louise - polynomial-time Program Learning Getting help with Louise Louise's author can be reached by email at Stassa Patsantzis 64 Dec 26, 2022

Distance Encoding for GNN Design

Distance-encoding for GNN design This repository is the official PyTorch implementation of the DEGNN and DEAGNN framework reported in the paper: Dista

172 Nov 08, 2022
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
Populating 3D Scenes by Learning Human-Scene Interaction https://posa.is.tue.mpg.de/

Populating 3D Scenes by Learning Human-Scene Interaction [Project Page] [Paper] License Software Copyright License for non-commercial scientific resea

Mohamed Hassan 81 Nov 08, 2022
[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

249 Dec 28, 2022
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

EVolve Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem. Overview EVolve is a linked mantle degassing and a

Pip Liggins 2 Jan 17, 2022
Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented at RAI 2021.

Can Active Learning Preemptively Mitigate Fairness Issues? Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented a

ElementAI 7 Aug 12, 2022
Caffe implementation for Hu et al. Segmentation for Natural Language Expressions

Segmentation from Natural Language Expressions This repository contains the Caffe reimplementation of the following paper: R. Hu, M. Rohrbach, T. Darr

10 Jul 27, 2021
GANmouflage: 3D Object Nondetection with Texture Fields

GANmouflage: 3D Object Nondetection with Texture Fields Rui Guo1 Jasmine Collins

29 Aug 10, 2022
atmaCup #11 の Public 4th / Pricvate 5th Solution のリポジトリです。

#11 atmaCup 2021-07-09 ~ 2020-07-21 に行われた #11 [初心者歓迎! / 画像編] atmaCup のリポジトリです。結果は Public 4th / Private 5th でした。 フレームワークは PyTorch で、実装は pytorch-image-m

Tawara 12 Apr 07, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
Curved Projection Reformation

Description Assuming that we already know the image of the centerline, we want the lumen to be displayed on a plane, which requires curved projection

夜听残荷 5 Sep 11, 2022
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

231 Jan 05, 2023
A repository for storing njxzc final exam review material

文档地址,请戳我 👈 👈 👈 ☀️ 1.Reason 大三上期末复习软件工程的时候,发现其他高校在GitHub上开源了他们学校的期末试题,我很受触动。期末

GuJiakai 2 Jan 18, 2022
This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

DropEdge: Towards Deep Graph Convolutional Networks on Node Classification This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Con

401 Dec 16, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
PyVideoAI: Action Recognition Framework

This reposity contains official implementation of: Capturing Temporal Information in a Single Frame: Channel Sampling Strategies for Action Recognitio

Kiyoon Kim 22 Dec 29, 2022
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

Faster R-CNN pretrained on VisualGenome This repository modifies maskrcnn-benchmark for object detection and attribute prediction on VisualGenome data

Shizhe Chen 7 Apr 20, 2021