Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

Related tags

Deep LearningDSBF
Overview

DSBF

Introduction

This repository contains the implementation code for paper:

Domain-Specific Bias Filtering for Single Labeled Domain Generalization

Junkun Yuan, Xu Ma, Defang Chen, Kun Kuang, Fei Wu, Lanfen Lin

arXiv preprint, 2021

[arXiv]

Brief Abstract for the Paper


Domain generalization (DG) utilizes multiple labeled source datasets to train a generalizable model for unseen target domains. However, due to expensive annotation costs, the requirements of labeling all the source data are hard to be met in real-world applications.

We investigate a Single Labeled Domain Generalization (SLDG) task with only one source domain being labeled, which is more practical and challenging than the Conventional Domain Generalization (CDG). A major obstacle in the SLDG task is the discriminability-generalization bias: discriminative information in the labeled source dataset may contain domain-specific bias, constraining the generalization of the trained model.

To tackle this challenging task, we propose Domain-Specific Bias Filtering (DSBF), which initializes a discriminative model with the labeled source data and filters out its domain-specific bias with the unlabeled source data for generalization improvement. We divide the filtering process into: (1) Feature extractor debiasing using k-means clustering-based semantic feature re-extraction; and (2) Classifier calibrating using attention-guided semantic feature projection.

Requirements

You may need to build suitable Python environment by installing the following packages (Anaconda is recommended).

  • python 3.6
  • pytorch 1.7.1 (with cuda 11.0 and cudnn 8.0)
  • torchvision 0.8.2
  • tensorboardx 2.1
  • numpy 1.19

Data Preparation

We list the adopted datasets in the following.

Datasets Download link
PACS [1] https://dali-dl.github.io/project_iccv2017.html
Office-Home [2] https://www.hemanthdv.org/officeHomeDataset.html

Please note:

  • Although these datasets are open-sourced, you may need to have permission to use the datasets under the datasets' license.
  • If you're a dataset owner and do not want your dataset to be included here, please get in touch with us via a GitHub issue. Thanks!

Usage

  1. Prepare the datasets.
  2. Update the .txt files under folder "DSBF/dataset/pthList/" with your dataset path.
  3. Run the code with command:
nohup sh run.sh > run.txt 2>&1 &
  1. Check results in DSBF/dataset-task-target-data.txt.

Citation

If you find our code or idea useful for your research, please cite our work.

@article{yuan2021domain,
  title={Domain-Specific Bias Filtering for Single Labeled Domain Generalization},
  author={Yuan, Junkun and Ma, Xu and Chen, Defang and Kuang, Kun and Wu, Fei and Lin, Lanfen},
  journal={arXiv preprint arXiv:2110.00726},
  year={2021}
}

Contact

If you have any questions, feel free to contact us through email ([email protected]) or GitHub issues. Thanks!

References

[1] Li, Da, et al. "Deeper, broader and artier domain generalization." Proceedings of the IEEE international conference on computer vision. 2017.

[2] Venkateswara, Hemanth, et al. "Deep hashing network for unsupervised domain adaptation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

Owner
ScottYuan
CS PhD student.
ScottYuan
Groceries ARL: Association Rules (Birliktelik Kuralı)

Groceries_ARL Association Rules (Birliktelik Kuralı) Birliktelik kuralları, mark

Şebnem 5 Feb 08, 2022
CS50x-AI - Artificial Intelligence with Python from Harvard University

CS50x-AI Artificial Intelligence with Python from Harvard University 📖 Table of

Hosein Damavandi 6 Aug 22, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
Hippocampal segmentation using the UNet network for each axis

Hipposeg Hippocampal segmentation using the UNet network for each axis, inspired by https://github.com/MICLab-Unicamp/e2dhipseg Red: False Positive Gr

Juan Carlos Aguirre Arango 0 Sep 02, 2021
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context Code in both PyTorch and TensorFlow

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Jan 06, 2023
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022
Official code for "Decoupling Zero-Shot Semantic Segmentation"

Decoupling Zero-Shot Semantic Segmentation This is the official code for the arxiv. ZegFormer is the first framework that decouple the zero-shot seman

Jian Ding 108 Dec 30, 2022
Adaptive Denoising Training (ADT) for Recommendation.

DenoisingRec Adaptive Denoising Training for Recommendation. This is the pytorch implementation of our paper at WSDM 2021: Denoising Implicit Feedback

Wenjie Wang 51 Dec 30, 2022
Our VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks.

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. VMAgent is constructed based on one month r

56 Dec 12, 2022
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022
Deep Learning to Create StepMania SM FIles

StepCOVNet Running Audio to SM File Generator Currently only produces .txt files. Use SMDataTools to convert .txt to .sm python stepmania_note_generat

Chimezie Iwuanyanwu 8 Jan 08, 2023
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue. How do I cite D-REX? For now, cite

Alon Albalak 6 Mar 31, 2022
Scenarios, tutorials and demos for Autonomous Driving

The Autonomous Driving Cookbook (Preview) NOTE: This project is developed and being maintained by Project Road Runner at Microsoft Garage. This is cur

Microsoft 2.1k Jan 02, 2023
This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization

Spherical Gaussian Optimization This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization. This code has b

41 Dec 14, 2022
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022