TRIQ implementation

Overview

TRIQ Implementation

TF-Keras implementation of TRIQ as described in Transformer for Image Quality Assessment.

Installation

  1. Clone this repository.
  2. Install required Python packages. The code is developed by PyCharm in Python 3.7. The requirements.txt document is generated by PyCharm, and the code should also be run in latest versions of the packages.

Training a model

An example of training TRIQ can be seen in train/train_triq.py. Argparser should be used, but the authors prefer to use dictionary with parameters being defined. It is easy to convert to take arguments. In principle, the following parameters can be defined:

args = {}
args['multi_gpu'] = 0 # gpu setting, set to 1 for using multiple GPUs
args['gpu'] = 0  # If having multiple GPUs, specify which GPU to use

args['result_folder'] = r'..\databases\experiments' # Define result path
args['n_quality_levels'] = 5  # Choose between 1 (MOS prediction) and 5 (distribution prediction)

args['transformer_params'] = [2, 32, 8, 64]

args['train_folders'] =  # Define folders containing training images
    [
    r'..\databases\train\koniq_normal',
    r'..\databases\train\koniq_small',
    r'..\databases\train\live'
    ]
args['val_folders'] =  # Define folders containing testing images
    [
    r'..\databases\val\koniq_normal',
    r'..\databases\val\koniq_small',
    r'..\databases\val\live'
    ]
args['koniq_mos_file'] = r'..\databases\koniq10k_images_scores.csv'  # MOS (distribution of scores) file for KonIQ database
args['live_mos_file'] = r'..\databases\live_mos.csv'   # MOS (standard distribution of scores) file for LIVE-wild database

args['backbone'] = 'resnet50' # Choose from ['resnet50', 'vgg16']
args['weights'] = r'...\pretrained_weights\resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'  # Define the path of ImageNet pretrained weights
args['initial_epoch'] = 0  # Define initial epoch for use in fine-tune

args['lr_base'] = 1e-4 / 2  # Define the back learning rate in warmup and rate decay approach
args['lr_schedule'] = True  # Choose between True and False, indicating if learning rate schedule should be used or not
args['batch_size'] = 32  # Batch size, should choose to fit in the GPU memory
args['epochs'] = 120  # Maximal epoch number, can set early stop in the callback or not

args['image_aug'] = True # Choose between True and False, indicating if image augmentation should be used or not

Predict image quality using the trained model

After TRIQ has been trained, and the weights have been stored in h5 file, it can be used to predict image quality with arbitrary sizes,

    args = {}
    args['n_quality_levels'] = 5
    args['backbone'] = 'resnet50'
    args['weights'] = r'..\\TRIQ.h5'
    model = create_triq_model(n_quality_levels=args['n_quality_levels'],
                              backbone=args['backbone'],])
    model.load_weights(args['weights'])

And then use ModelEvaluation to predict quality of image set.

In the "examples" folder, an example script examples\image_quality_prediction.py is provided to use the trained weights to predict quality of example images. In the "train" folder, an example script train\validation.py is provided to use the trained weights to predict quality of images in folders.

A potential issue is image shape mismatch. For example, if an image is too large, then line 146 in transformer_iqa.py should be changed to increase the pooling size. For example, it can be changed to self.pooling_small = MaxPool2D(pool_size=(4, 4)) or even larger.

Prepare datasets for model training

This work uses two publicly available databases: KonIQ-10k KonIQ-10k: An ecologically valid database for deep learning of blind image quality assessment by V. Hosu, H. Lin, T. Sziranyi, and D. Saupe; and LIVE-wild Massive online crowdsourced study of subjective and objective picture quality by D. Ghadiyaram, and A.C. Bovik

  1. The two databases were merged, and then split to training and testing sets. Please see README in databases for details.

  2. Make MOS files (note: do NOT include head line):

    For database with score distribution available, the MOS file is like this (koniq format):

        image path, voter number of quality scale 1, voter number of quality scale 2, voter number of quality scale 3, voter number of quality scale 4, voter number of quality scale 5, MOS or Z-score
        10004473376.jpg,0,0,25,73,7,3.828571429
        10007357496.jpg,0,3,45,47,1,3.479166667
        10007903636.jpg,1,0,20,73,2,3.78125
        10009096245.jpg,0,0,21,75,13,3.926605505
    

    For database with standard deviation available, the MOS file is like this (live format):

        image path, standard deviation, MOS or Z-score
        t1.bmp,18.3762,63.9634
        t2.bmp,13.6514,25.3353
        t3.bmp,18.9246,48.9366
        t4.bmp,18.2414,35.8863
    

    The format of MOS file ('koniq' or 'live') and the format of MOS or Z-score ('mos' or 'z_score') should also be specified in misc/imageset_handler/get_image_scores.

  3. In the train script in train/train_triq.py the folders containing training and testing images are provided.

  4. Pretrained ImageNet weights can be downloaded (see README in.\pretrained_weights) and pointed to in the train script.

Trained TRIQ weights

TRIQ has been trained on KonIQ-10k and LIVE-wild databases, and the weights file can be downloaded here.

State-of-the-art models

Other three models are also included in the work. The original implementations of metrics are employed, and they can be found below.

Koncept512 KonIQ-10k: An ecologically valid database for deep learning of blind image quality assessment

SGDNet SGDNet: An end-to-end saliency-guided deep neural network for no-reference image quality assessment

CaHDC End-to-end blind image quality prediction with cascaded deep neural network

Comparison results

We have conducted several experiments to evaluate the performance of TRIQ, please see results.pdf for detailed results.

Error report

In case errors/exceptions are encountered, please first check all the paths. After fixing the path isse, please report any errors in Issues.

FAQ

  • To be added

ViT (Vision Transformer) for IQA

This work is heavily inspired by ViT An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. The module vit_iqa contains implementation of ViT for IQA, and mainly followed the implementation of ViT-PyTorch. Pretrained ViT weights can be downloaded here.

Owner
Junyong You
Junyong You
The code of paper "Block Modeling-Guided Graph Convolutional Neural Networks".

Block Modeling-Guided Graph Convolutional Neural Networks This repository contains the demo code of the paper: Block Modeling-Guided Graph Convolution

22 Dec 08, 2022
CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY

M-BERT-Study CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY Motivation Multilingual BERT (M-BERT) has shown surprising cross lingual a

CogComp 1 Feb 28, 2022
Imagededup - 😎 Finding duplicate images made easy

imagededup is a python package that simplifies the task of finding exact and near duplicates in an image collection.

idealo 4.3k Jan 07, 2023
Template repository for managing machine learning research projects built with PyTorch-Lightning

Tutorial Repository with a minimal example for showing how to deploy training across various compute infrastructure.

Sidd Karamcheti 3 Feb 11, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.

English | 简体中文 Documentation: https://mmtracking.readthedocs.io/ Introduction MMTracking is an open source video perception toolbox based on PyTorch.

OpenMMLab 2.7k Jan 08, 2023
An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

MixHop and N-GCN ⠀ A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019)

Benedek Rozemberczki 393 Dec 13, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
A Python library for working with arbitrary-dimension hypercomplex numbers following the Cayley-Dickson construction of algebras.

Hypercomplex A Python library for working with quaternions, octonions, sedenions, and beyond following the Cayley-Dickson construction of hypercomplex

7 Nov 04, 2022
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

The-Emergence-of-Objectness This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

44 Oct 08, 2022
🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Made With ML 82 Jun 26, 2022
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories. Metrics provides i

Ben Hamner 1.6k Dec 26, 2022
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
Code and models for "Rethinking Deep Image Prior for Denoising" (ICCV 2021)

DIP-denosing This is a code repo for Rethinking Deep Image Prior for Denoising (ICCV 2021). Addressing the relationship between Deep image prior and e

Computer Vision Lab. @ GIST 36 Dec 29, 2022
TCube generates rich and fluent narratives that describes the characteristics, trends, and anomalies of any time-series data (domain-agnostic) using the transfer learning capabilities of PLMs.

TCube: Domain-Agnostic Neural Time series Narration This repository contains the code for the paper: "TCube: Domain-Agnostic Neural Time series Narrat

Mandar Sharma 7 Oct 31, 2021
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 01, 2022