nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

Related tags

Deep LearningnextPARS
Overview

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

Here you will find the scripts necessary to produce the scores described in our paper from fastq files obtained during the experiment.

Install Prerequisites

First install git:

sudo apt-get update
sudo apt-get install git-all

Then clone this repository

git clone https://github.com/jwill123/nextPARS.git

Now, ensure the necessary python packages are installed, and can be found in the $PYTHONPATH environment variable by running the script packages_for_nextPARS.sh in the nextPARS directory.

cd nextPARS/conf
chmod 775 packages_for_nextPARS.sh
./packages_for_nextPARS.sh

Convert fastq to tab

In order to go from the fastq outputs of the nextPARS experiments to a format that allows us to calculate scores, first map the reads in the fastq files to a reference using the program of your choice. Once you have obtained a bam file, use PARSParser_0.67.b.jar. This program counts the number of reads beginning at each position (which indicates a cut site for the enzyme in the file name) and outputs it in .tab format (count values for each position are separated by semi-colons).

Example usage:

java -jar PARSParser_0.67.b.jar -a bamFile -b bedFile -out outFile -q 20 -m 5

where the required arguments are:

  • -a gives the bam file of interest
  • -b is the bed file for the reference
  • -out is the name given to the output file in .tab format

Also accepts arguments:

  • -q for minimum mapping quality for reads to be included [default = 0]
  • -m for minimum average counts per position for a given transcript [default = 5.0]

Sample Data

There are sample data files found in the folder nextPARS/data, as well as the necessary fasta files in nextPARS/data/SEQS/PROBES, and the reference structures obtained from PDB in nextPARS/data/STRUCTURES/REFERENCE_STRUCTURES There are also 2 folders of sample output files from the PARSParser_0.67.b.jar program that can be used as further examples of the nextPARS score calculations described below. These folders are found in nextPARS/data/PARSParser_outputs. NOTE: these are randomly generated sequences with random enzyme values, so they are just to be used as examples for the usage of the scripts, good results should not be expected with these.

nextPARS Scores

To obtain the scores from nextPARS experiments, use the script get_combined_score.py. Sample data for the 5 PDB control structures can be found in the folder nextPARS/data/

There are a number of different command line options in the script, many of which were experimental or exploratory and are not relevant here. The useful ones in this context are the following:

  • Use the -i option [REQUIRED] to indicate the molecule for which you want scores (all available data files will be included in the calculations -- molecule name must match that in the data file names)

  • Use the -inDir option to indicate the directory containing the .tab files with read counts for each V1 and S1 enzyme cuts

  • Use the -f option to indicate the path to the fasta file for the input molecule

  • Use the -s option to produce an output Structure Preference Profile (SPP) file. Values for each position are separated by semi-colons. Here 0 = paired position, 1 = unpaired position, and NA = position with a score too low to determine its configuration.

  • Use the -o option to output the calculated scores, again with values for each position separated by semi-colons.

  • Use the --nP_only option to output the calculated nextPARS scores before incorporating the RNN classifier, again with values for each position separated by semi-colons.

  • Use the option {-V nextPARS} to produce an output with the scores that is compatible with the structure visualization program VARNA1

  • Use the option {-V spp} to produce an output with the SPP values that is compatible with VARNA.

  • Use the -t option to change the threshold value for scores when determining SPP values [default = 0.8, or -0.8 for negative scores]

  • Use the -c option to change the percentile cap for raw values at the beginning of calculations [default = 95]

  • Use the -v option to print some statistics in the case that there is a reference CT file available ( as with the example molecules, found in nextPARS/data/STRUCTURES/REFERENCE_STRUCTURES ). If not, will still print nextPARS scores and info about the enzyme .tab files included in the calculations.

Example usage:

# to produce an SPP file for the molecule TETp4p6
python get_combined_score.py -i TETp4p6 -s
# to produce a Varna-compatible output with the nextPARS scores for one of the 
# randomly generated example molecules
python get_combined_score.py -i test_37 -inDir nextPARS/data/PARSParser_outputs/test1 \
  -f nextPARS/data/PARSParser_outputs/test1/test1.fasta -V nextPARS

RNN classifier (already incorporated into the nextPARS scores above)

To run the RNN classifier separately, using a different experimental score input (in .tab format), it can be run like so with the predict2.py script:

python predict2.py -f molecule.fasta -p scoreFile.tab -o output.tab

Where the command line options are as follows:

  • the -f option [REQUIRED] is the input fasta file
  • the -p option [REQUIRED] is the input Score tab file
  • the -o option [REQUIRED] is the final Score tab output file.
  • the -w1 option is the weight for the RNN score. [default = 0.5]
  • the -w2 option is the weight for the experimental data score. [default = 0.5]

References:

  1. Darty,K., Denise,A. and Ponty,Y. (2009) VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinforma. Oxf. Engl., 25, 1974–197
Owner
Jesse Willis
Jesse Willis
Official code for "Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021".

Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021. Introduction We proposed a novel model training paradi

Lucas 103 Dec 14, 2022
A Light CNN for Deep Face Representation with Noisy Labels

A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=

Alfred Xiang Wu 715 Nov 05, 2022
Kinetics-Data-Preprocessing

Kinetics-Data-Preprocessing Kinetics-400 and Kinetics-600 are common video recognition datasets used by popular video understanding projects like Slow

Kaihua Tang 7 Oct 27, 2022
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences

Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor

DIVE Lab, Texas A&M University 8 Jun 12, 2022
Learning Confidence for Out-of-Distribution Detection in Neural Networks

Learning Confidence Estimates for Neural Networks This repository contains the code for the paper Learning Confidence for Out-of-Distribution Detectio

235 Jan 05, 2023
Complete system for facial identity system

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

4 May 02, 2022
Lightweight Face Image Quality Assessment

LightQNet This is a demo code of training and testing [LightQNet] using Tensorflow. Uncertainty Losses: IDQ loss PCNet loss Uncertainty Networks: Mobi

Kaen 5 Nov 18, 2022
Toolkit for collecting and applying prompts

PromptSource Promptsource is a toolkit for collecting and applying prompts to NLP datasets. Promptsource uses a simple templating language to programa

BigScience Workshop 998 Jan 03, 2023
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
Arch-Net: Model Distillation for Architecture Agnostic Model Deployment

Arch-Net: Model Distillation for Architecture Agnostic Model Deployment The official implementation of Arch-Net: Model Distillation for Architecture A

MEGVII Research 22 Jan 05, 2023
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral) Figure: Face image editing controlled via style images and segmenta

Peihao Zhu 579 Dec 30, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
HyperPose is a library for building high-performance custom pose estimation applications.

HyperPose is a library for building high-performance custom pose estimation applications.

TensorLayer Community 1.2k Jan 04, 2023
A tool to estimate time varying instantaneous reproduction number during epidemics

EpiEstim A tool to estimate time varying instantaneous reproduction number during epidemics. It is described in the following paper: @article{Cori2013

MRC Centre for Global Infectious Disease Analysis 78 Dec 19, 2022
Physical Anomalous Trajectory or Motion (PHANTOM) Dataset

Physical Anomalous Trajectory or Motion (PHANTOM) Dataset Description This dataset contains the six different classes as described in our paper[]. The

0 Dec 16, 2021
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

Jinrong Yang 237 Dec 27, 2022
Simple renderer for use with MuJoCo (>=2.1.2) Python Bindings.

Viewer for MuJoCo in Python Interactive renderer to use with the official Python bindings for MuJoCo. Starting with version 2.1.2, MuJoCo comes with n

Rohan P. Singh 62 Dec 30, 2022
Parsing, analyzing, and comparing source code across many languages

Semantic semantic is a Haskell library and command line tool for parsing, analyzing, and comparing source code. In a hurry? Check out our documentatio

GitHub 8.6k Dec 28, 2022
Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging This repository contains an implementation

Computational Photography Lab @ SFU 1.1k Jan 02, 2023
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022