Official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th ICML Workshop on AutoML)

Related tags

Deep Learningautowu
Overview

Automated Learning Rate Scheduler for Large-Batch Training

The official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th ICML Workshop on AutoML).

Overview

AutoWU is an automated LR scheduler which consists of two phases: warmup and decay. Learning rate (LR) is increased in an exponential rate until the loss starts to increase, and in the decay phase LR is decreased following the pre-specified type of the decay (either cosine or constant-then-cosine, in our experiments).

Transition from the warmup to the decay phase is done automatically by testing whether the minimum of the predicted loss curve is attained in the past or not with high probability, and the prediction is made via Gaussian Process regression.

Diagram summarizing AutoWU

How to use

Setup

pip install -r requirements.txt

Quick use

You can use AutoWU as other PyTorch schedulers, except that it takes loss as an argument (like ReduceLROnPlateau in PyTorch). The following code snippet demonstrates a typical usage of AutoWU.

from autowu import AutoWU

...

scheduler = AutoWU(optimizer,
                   len(train_loader),  # the number of steps in one epoch 
                   total_epochs,  # total number of epochs
                   immediate_cooldown=True,
                   cooldown_type='cosine',
                   device=device)

...

for _ in range(total_epochs):
    for inputs, targets in train_loader:
        loss = loss_fn(model(inputs), targets)
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()
        scheduler.step(loss)

The default decay phase schedule is ''cosine''. To use constant-then-cosine schedule rather than cosine, set immediate_cooldown=False and set cooldown_fraction to a desired value:

scheduler = AutoWU(optimizer,
                   len(train_loader),  # the number of steps in one epoch 
                   total_epochs,  # total number of epochs
                   immediate_cooldown=False,
                   cooldown_type='cosine',
                   cooldown_fraction=0.2,  # fraction of cosine decay at the end
                   device=device)

Reproduction of results

We provide an exemplar training script train.py which is based on Pytorch Image Models. The script supports training ResNet-50 and EfficientNet-B0 on ImageNet classification under the setting almost identical to the paper. We report the top-1 accuracy of ResNet-50 and EfficientNet-B0 on the validation set trained with batch sizes 4K (4096) and 16K (16384), along with the scores reported in our paper.

ResNet-50 This repo. Reported (paper)
4K 75.54% 75.70%
16K 74.87% 75.22%
EfficientNet-B0 This repo. Reported (paper)
4K 75.74% 75.81%
16K 75.66% 75.44%

You can use distributed.launch util to run the script. For instance, in case of ResNet-50 training with batch size 4096, execute the following line with variables set according to your environment:

python -m torch.distributed.launch \
--nproc_per_node=4 \
--nnodes=4 \
--node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR \
--master_port=$MASTER_PORT \
train.py \
--data-root $DATA_ROOT \
--amp \
--batch-size 256 

In addition, add --model efficientnet_b0 argument in case of EfficientNet-B0 training.

Citation

@inproceedings{
    kim2021automated,
    title={Automated Learning Rate Scheduler for Large-batch Training},
    author={Chiheon Kim and Saehoon Kim and Jongmin Kim and Donghoon Lee and Sungwoong Kim},
    booktitle={8th ICML Workshop on Automated Machine Learning (AutoML)},
    year={2021},
    url={https://openreview.net/forum?id=ljIl7KCNYZH}
}

License

This project is licensed under the terms of Apache License 2.0. Copyright 2021 Kakao Brain. All right reserved.

Owner
Kakao Brain
Kakao Brain Corp.
Kakao Brain
Boosted neural network for tabular data

XBNet - Xtremely Boosted Network Boosted neural network for tabular data XBNet is an open source project which is built with PyTorch which tries to co

Tushar Sarkar 175 Jan 04, 2023
Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite.

TFLite-HITNET-Stereo-depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite. Stereo depth e

Ibai Gorordo 22 Oct 20, 2022
Machine learning Bot detection technique, based on United States election dataset

Machine learning Bot detection technique, based on United States election dataset (2020). Current github repo provides implementation described in pap

Alexander Shevtsov 4 Nov 20, 2022
GNEE - GAT Neural Event Embeddings

GNEE - GAT Neural Event Embeddings This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Se

João Pedro Rodrigues Mattos 0 Sep 15, 2021
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.

tflite2tensorflow Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite. 1. Supported Layers No. TFLite Layer TF

Katsuya Hyodo 214 Dec 29, 2022
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022
Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor

Lukas Hedegaard 21 Dec 22, 2022
HW3 ― GAN, ACGAN and UDA

HW3 ― GAN, ACGAN and UDA In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN

grassking100 1 Dec 13, 2021
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Synthetic Humans for Action Recognition, IJCV 2021

SURREACT: Synthetic Humans for Action Recognition from Unseen Viewpoints Gül Varol, Ivan Laptev and Cordelia Schmid, Andrew Zisserman, Synthetic Human

Gul Varol 59 Dec 14, 2022
Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri

Shiqi Yang 53 Dec 25, 2022
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

Xinyu Yi 261 Dec 31, 2022
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
Agent-based model simulator for air quality and pandemic risk assessment in architectural spaces

Agent-based model simulation for air quality and pandemic risk assessment in architectural spaces. User Guide archABM is a fast and open source agent-

Vicomtech 10 Dec 05, 2022
This repo is a PyTorch implementation for Paper "Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds"

Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds This repository is a PyTorch implementation for paper: Uns

Kaizhi Yang 42 Dec 09, 2022
Gems & Holiday Package Prediction

Predictive_Modelling Gems & Holiday Package Prediction This project is based on 2 cases studies : Gems Price Prediction and Holiday Package prediction

Avnika Mehta 1 Jan 27, 2022