HW3 ― GAN, ACGAN and UDA

Overview

HW3 ― GAN, ACGAN and UDA

In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN and ACGAN for generating human face images, and the model of DANN for classifying digit images from different domains.

For more details, please click this link to view the slides of HW3.

Usage

To start working on this assignment, you should clone this repository into your local machine by using the following command.

git clone https://github.com/dlcv-spring-2019/hw3-
   
    .git

   

Note that you should replace with your own GitHub username.

Dataset

In the starter code of this repository, we have provided a shell script for downloading and extracting the dataset for this assignment. For Linux users, simply use the following command.

bash ./get_dataset.sh

The shell script will automatically download the dataset and store the data in a folder called hw3_data. Note that this command by default only works on Linux. If you are using other operating systems, you should download the dataset from this link and unzip the compressed file manually.

⚠️ IMPORTANT NOTE ⚠️
You should keep a copy of the dataset only in your local machine. DO NOT upload the dataset to this remote repository. If you extract the dataset manually, be sure to put them in a folder called hw3_data under the root directory of your local repository so that it will be included in the default .gitignore file.

Evaluation

To evaluate your UDA models in Problems 3 and 4, you can run the evaluation script provided in the starter code by using the following command.

python3 hw3_eval.py $1 $2
  • $1 is the path to your predicted results (e.g. hw3_data/digits/mnistm/test_pred.csv)
  • $2 is the path to the ground truth (e.g. hw3_data/digits/mnistm/test.csv)

Note that for hw3_eval.py to work, your predicted .csv files should have the same format as the ground truth files we provided in the dataset as shown below.

image_name label
00000.png 4
00001.png 3
00002.png 5
... ...

Submission Rules

Deadline

108/05/08 (Wed.) 01:00 AM

Late Submission Policy

You have a five-day delay quota for the whole semester. Once you have exceeded your quota, the credit of any late submission will be deducted by 30% each day.

Note that while it is possible to continue your work in this repository after the deadline, we will by default grade your last commit before the deadline specified above. If you wish to use your quota or submit an earlier version of your repository, please contact the TAs and let them know which commit to grade. For more information, please check out this post.

Academic Honesty

  • Taking any unfair advantages over other class members (or letting anyone do so) is strictly prohibited. Violating university policy would result in an F grade for this course (NOT negotiable).
  • If you refer to some parts of the public code, you are required to specify the references in your report (e.g. URL to GitHub repositories).
  • You are encouraged to discuss homework assignments with your fellow class members, but you must complete the assignment by yourself. TAs will compare the similarity of everyone’s submission. Any form of cheating or plagiarism will not be tolerated and will also result in an F grade for students with such misconduct.

Submission Format

Aside from your own Python scripts and model files, you should make sure that your submission includes at least the following files in the root directory of this repository:

  1. hw3_ .pdf
    The report of your homework assignment. Refer to the "Grading" section in the slides for what you should include in the report. Note that you should replace with your student ID, NOT your GitHub username.
  2. hw3_p1p2.sh
    The shell script file for running your GAN and ACGAN models. This script takes as input a folder and should output two images named fig1_2.jpg and fig2_2.jpg in the given folder.
  3. hw3_p3.sh
    The shell script file for running your DANN model. This script takes as input a folder containing testing images and a string indicating the target domain, and should output the predicted results in a .csv file.
  4. hw3_p4.sh
    The shell script file for running your improved UDA model. This script takes as input a folder containing testing images and a string indicating the target domain, and should output the predicted results in a .csv file.

We will run your code in the following manner:

bash ./hw3_p1p2.sh $1
bash ./hw3_p3.sh $2 $3 $4
bash ./hw3_p4.sh $2 $3 $4
  • $1 is the folder to which you should output your fig1_2.jpg and fig2_2.jpg.
  • $2 is the directory of testing images in the target domain (e.g. hw3_data/digits/mnistm/test).
  • $3 is a string that indicates the name of the target domain, which will be either mnistm, usps or svhn.
    • Note that you should run the model whose target domain corresponds with $3. For example, when $3 is mnistm, you should make your prediction using your "USPS→MNIST-M" model, NOT your "MNIST-M→SVHN" model.
  • $4 is the path to your output prediction file (e.g. hw3_data/digits/mnistm/test_pred.csv).

🆕 NOTE
For the sake of conformity, please use the python3 command to call your .py files in all your shell scripts. Do not use python or other aliases, otherwise your commands may fail in our autograding scripts.

Packages

Below is a list of packages you are allowed to import in this assignment:

python: 3.5+
tensorflow: 1.13
keras: 2.2+
torch: 1.0
h5py: 2.9.0
numpy: 1.16.2
pandas: 0.24.0
torchvision: 0.2.2
cv2, matplotlib, skimage, Pillow, scipy
The Python Standard Library

Note that using packages with different versions will very likely lead to compatibility issues, so make sure that you install the correct version if one is specified above. E-mail or ask the TAs first if you want to import other packages.

Remarks

  • If your model is larger than GitHub’s maximum capacity (100MB), you can upload your model to another cloud service (e.g. Dropbox). However, your shell script files should be able to download the model automatically. For a tutorial on how to do this using Dropbox, please click this link.
  • DO NOT hard code any path in your file or script, and the execution time of your testing code should not exceed an allowed maximum of 10 minutes.
  • If we fail to run your code due to not following the submission rules, you will receive 0 credit for this assignment.

Q&A

If you have any problems related to HW3, you may

Owner
grassking100
A researcher study in bioinformatics and deep learning. To see other repositories: https://bitbucket.org/grassking100/?sort=-updated_on&privacy=public.
grassking100
SCU OlympicsRunning Baseline

Competition 1v1 running Environment check details in Jidi Competition RLChina2021智能体竞赛 做出的修改: 奖励重塑:修改了环境,重新设置了奖励的分配,使得奖励组成不只有零和博弈,还有探索环境的奖励。 算法微调:修改了官

ZiSeoi Wong 2 Nov 23, 2021
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
Husein pet projects in here!

project-suka-suka Husein pet projects in here! List of projects mysejahtera-density. Generate resolution points using meshgrid and request each points

HUSEIN ZOLKEPLI 47 Dec 09, 2022
Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

GUO-W 38 Nov 15, 2022
TensorFlow implementation of "Variational Inference with Normalizing Flows"

[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co

YeongHyeon Park 7 Jun 08, 2022
The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark."

FFA-IR The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark." The framework is inheri

Mingjie 28 Dec 16, 2022
Modeling CNN layers activity with Gaussian mixture model

GMM-CNN This code package implements the modeling of CNN layers activity with Gaussian mixture model and Inference Graphs visualization technique from

3 Aug 05, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020.

41 Oct 27, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
official code for dynamic convolution decomposition

Revisiting Dynamic Convolution via Matrix Decomposition (ICLR 2021) A pytorch implementation of DCD. If you use this code in your research please cons

Yunsheng Li 110 Nov 23, 2022
This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

ROSEFusion 🌹 This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Moti

219 Dec 27, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 322 Dec 31, 2022
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Salesforce 1.3k Dec 31, 2022
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022