Cross-modal Retrieval using Transformer Encoder Reasoning Networks (TERN). With use of Metric Learning and FAISS for fast similarity search on GPU

Overview

Cross-modal Retrieval using Transformer Encoder Reasoning Networks

This project reimplements the idea from "Transformer Reasoning Network for Image-Text Matching and Retrieval". To solve the task of cross-modal retrieval, representative features from both modal are extracted using distinctive pipeline and then projected into the same embedding space. Because the features are sequence of vectors, Transformer-based model can be utilised to work best. In this repo, my highlight contribution is:

  • Reimplement TERN module, which exploits the effectiveness of using Transformer on bottom-up attention features and bert features.
  • Take advantage of facebookresearch's FAISS for efficient similarity search and clustering of dense vectors.
  • Experiment various metric learning loss objectives from KevinMusgrave's Pytorch Metric Learning

The figure below shows the overview of the architecture

screen

Datasets

  • I trained TERN on Flickr30k dataset which contains 31,000 images collected from Flickr, together with 5 reference sentences provided by human annotators for each image. For each sample, visual and text features are pre-extracted as numpy files

  • Some samples from the dataset:

Images Captions
screen 1. An elderly man is setting the table in front of an open door that leads outside to a garden.
2. The guy in the black sweater is looking onto the table below.
3. A man in a black jacket picking something up from a table.
4. An old man wearing a black jacket is looking on the table.
5. The gray-haired man is wearing a sweater.
screen 1. Two men are working on a bicycle on the side of the road.
2. Three men working on a bicycle on a cobblestone street.
3. Two men wearing shorts are working on a blue bike.
4. Three men inspecting a bicycle on a street.
5. Three men examining a bicycle.

Execution

  • Installation
pip install -r requirements.txt
apt install libomp-dev
pip install faiss-gpu
  • Specify dataset paths and configuration in the config file

  • For training

PYTHONPATH=. python tools/train.py 
  • For evaluation
PYTHONPATH=. python tools/eval.py \
                --top_k= <top k similarity> \
                --weight= <model checkpoint> \

Notebooks

  • Notebook Inference TERN on Flickr30k dataset
  • Notebook Use FasterRCNN to extract Bottom Up embeddings
  • Notebook Use BERT to extract text embeddings

Results

  • Validation m on Flickr30k dataset (trained for 100 epochs):
Model Weights i2t/[email protected] t2i/[email protected]
TERN link 0.5174 0.7496
  • Some visualization
Query text: Two dogs are running along the street
screen
Query text: The woman is holding a violin
screen
Query text: Young boys are playing baseball
screen
Query text: A man is standing, looking at a lake
screen

Paper References

@misc{messina2021transformer,
      title={Transformer Reasoning Network for Image-Text Matching and Retrieval}, 
      author={Nicola Messina and Fabrizio Falchi and Andrea Esuli and Giuseppe Amato},
      year={2021},
      eprint={2004.09144},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
@misc{anderson2018bottomup,
      title={Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering}, 
      author={Peter Anderson and Xiaodong He and Chris Buehler and Damien Teney and Mark Johnson and Stephen Gould and Lei Zhang},
      year={2018},
      eprint={1707.07998},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
@article{JDH17,
  title={Billion-scale similarity search with GPUs},
  author={Johnson, Jeff and Douze, Matthijs and J{\'e}gou, Herv{\'e}},
  journal={arXiv preprint arXiv:1702.08734},
  year={2017}
}

Code References

Owner
Minh-Khoi Pham
Passionate Machine Learner
Minh-Khoi Pham
Course about deep learning for computer vision and graphics co-developed by YSDA and Skoltech.

Deep Vision and Graphics This repo supplements course "Deep Vision and Graphics" taught at YSDA @fall'21. The course is the successor of "Deep Learnin

Yandex School of Data Analysis 160 Jan 02, 2023
Codebase for Diffusion Models Beat GANS on Image Synthesis.

Codebase for Diffusion Models Beat GANS on Image Synthesis.

Katherine Crowson 128 Dec 02, 2022
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Pushpendu Ghosh 270 Dec 24, 2022
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

Emirhan Kurtuluş 1 Feb 07, 2022
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.

C2-Matching (CVPR2021) This repository contains the implementation of the following paper: Robust Reference-based Super-Resolution via C2-Matching Yum

Yuming Jiang 151 Dec 26, 2022
Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them

TensorFlow Serving + Streamlit! ✨ 🖼️ Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them! This is a pretty simple S

Álvaro Bartolomé 18 Jan 07, 2023
Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Perceiver - Pytorch Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch Install $ pip install perceiver-pytorch Usage

Phil Wang 876 Dec 29, 2022
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

12 Oct 28, 2022
ConvMAE: Masked Convolution Meets Masked Autoencoders

ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M

Alpha VL Team of Shanghai AI Lab 345 Jan 08, 2023
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
Google Brain - Ventilator Pressure Prediction

Google Brain - Ventilator Pressure Prediction https://www.kaggle.com/c/ventilator-pressure-prediction The ventilator data used in this competition was

Samuele Cucchi 1 Feb 11, 2022
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
Reference code for the paper CAMS: Color-Aware Multi-Style Transfer.

CAMS: Color-Aware Multi-Style Transfer Mahmoud Afifi1, Abdullah Abuolaim*1, Mostafa Hussien*2, Marcus A. Brubaker1, Michael S. Brown1 1York University

Mahmoud Afifi 36 Dec 04, 2022
Contour-guided image completion with perceptual grouping (BMVC 2021 publication)

Contour-guided Image Completion with Perceptual Grouping Authors Morteza Rezanejad*, Sidharth Gupta*, Chandra Gummaluru, Ryan Marten, John Wilder, Mic

Sid Gupta 6 Dec 27, 2022
The world's largest toxicity dataset.

The Toxicity Dataset by Surge AI Saving the internet is fun. Combing through thousands of online comments to build a toxicity dataset isn't. That's wh

Surge AI 134 Dec 19, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022