Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data

Overview

WeRateDogs Twitter Data from 2015 to 2017

Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data

Table of Contents

  1. Introduction
  2. Project Overview
  3. Requirements
  4. Project Movitivation
  5. Key Files
  6. Results
  7. Licensing, Authors, and Acknowledgements

1. Introduction

Real-world data rarely comes clean. Using Python and its libraries, I gathered data from a variety of sources and in a variety of formats, assessed its quality and tidiness, then cleaned it. This is called data wrangling. I documented my wrangling efforts in a Jupyter Notebook, then showcased them through analyses and visualizations using Python and its libraries.

The dataset that I wrangled (and analyzing and visualizing) was the tweet archive of Twitter user @dog_rates, also known as WeRateDogs. WeRateDogs is a Twitter account that rates people's dogs with a humorous comment about the dog. These ratings almost always have a denominator of 10. The numerators, though? Almost always greater than 10. 11/10, 12/10, 13/10, etc. Why? Because "they're good dogs Brent." WeRateDogs has over 4 million followers and has received international media coverage.

WeRateDogs downloaded their Twitter archive and sent it to Udacity via email to use in this project. This archive contains basic tweet data (tweet ID, timestamp, text, etc.) for all 5000+ of their tweets as they stood on August 1, 2017.

WRD_twitter_banner

2. Project Overview

Tasks in this project were as follows:

  • Step 1: Gathering data
  • Step 2: Assessing data
  • Step 3: Cleaning data
  • Step 4: Storing data
  • Step 5: Analyzing, and visualizing data
  • Step 6: Reporting
    • My data wrangling efforts
    • My data analyses and visualizations

3. Requirements

This project was created in a Jupyter Notebook made available via Anaconda and written in python.\ The following versions of languages and libraries were used in creating this project:

  • python==2.7.18
  • ipython==7.31.0
  • matplotlib==3.5.1
  • numpy==1.22.0
  • pandas==1.3.5
  • requests==2.27.1
  • scipy==1.7.3
  • seaborn==0.11.2
  • tweepy==4.4.0

4. Project Motivation

The goal: wrangle WeRateDogs Twitter data to create interesting and trustworthy analyses and visualizations. The Twitter archive is great, but it only contains very basic tweet information. Additional gathering, then assessing and cleaning is required for "Wow!"-worthy analyses and visualizations.

The overall purpose of this Udacity project was to refine our data wrangling skills with secondary importance on delivering multiple polished visualzations and tell a story or solve a problem. In other words, the journey was more important than the destination.

5. Key Files

  • twitter_archive_enhanced.csv
    The WeRateDogs Twitter archive contains basic tweet data for all 5000+ of their tweets, but not everything. One column the archive does contain though: each tweet's text, which Udacity used to extract rating, dog name, and dog "stage" (i.e. doggo, floofer, pupper, and puppo) to make this Twitter archive "enhanced." Of the 5000+ tweets, only those tweets with ratings were filtered. The data was extracted programmatically by Udacity, but the data was left messy on purpose. The ratings aren't all correct. Same goes for the dog names and probably dog stages (see below for more information on these) too. I had to assess and clean these columns to use them for analysis and visualization.

  • tweet_json.txt
    Resulting data queried using Twitter's API. It was necessary to gather the retweet count and favorite count which were omitted from the basic twitter_archive_enhanced.csv.

  • image-predictions.tsv
    Udacity ran every image in the WeRateDogs Twitter archive was through a neural network that can classify breeds of dogs. The results: a table full of image predictions (the top three only) alongside each tweet ID, image URL, and the image number that corresponded to the most confident prediction (numbered 1 to 4 since tweets can have up to four images).

  • wrangle_act.ipynb
    This contains the bulk of the project. This notebook contains all code for gathering, assessing, cleaning, analyzing, and visualizing data.

  • wrangle_report.pdf
    This was a report for documenting the data wrangling process: gather, assess, and clean.

  • act_report.pdf
    Documentation of analysis and insights

  • twitter_archive_master.csv
    Cleaned and merged dataset containing data from the 3 source data sets

6. Results

As said in the project motivation, the data wrangling process itself was more relevant than uncovering insights. At any rate, I was able to answer the following 4 questions:

  1. What is the most retweeted tweet?
    From the data I had from 2015 to 2017, this gem was the most retweeted tweet.
  2. What is the most common rating?
    12/10
  3. What are the most common breeds found by the neural network?
    The top 5, from less to most common, were Pug, Chihuahua, Welsh Corgi, Labrador Retriever, then finally Golden Retriever.
  4. What is the average retweet count for each rating?
    Screen Shot 2022-01-11 at 21 22 39
    I saw a general positive correlation between dog rating and retweet count (i.e. popularity). 13/10 and 14/10 tweets had the most retweets on average. Further details of the results can be seen in the act_report.pdf file.

7. Licensing, Authors, and Acknowledgements

All data provided and sourced by Udacity.

Owner
Keenan Cooper
Keenan Cooper
Integrate bus data from a variety of sources (batch processing and real time processing).

Purpose: This is integrate bus data from a variety of sources such as: csv, json api, sensor data ... into Relational Database (batch processing and r

1 Nov 25, 2021
Incubator for useful bioinformatics code, primarily in Python and R

Collection of useful code related to biological analysis. Much of this is discussed with examples at Blue collar bioinformatics. All code, images and

Brad Chapman 560 Jan 03, 2023
🌍 Create 3d-printable STLs from satellite elevation data 🌏

mapa 🌍 Create 3d-printable STLs from satellite elevation data Installation pip install mapa Usage mapa uses numpy and numba under the hood to crunch

Fabian Gebhart 13 Dec 15, 2022
API>local_db>AWS_RDS - Disclaimer! All data used is for educational purposes only.

APIlocal_dbAWS_RDS Disclaimer! All data used is for educational purposes only. ETL pipeline diagram. Aim of project By creating a fully working pipe

0 Apr 25, 2022
Randomisation-based inference in Python based on data resampling and permutation.

Randomisation-based inference in Python based on data resampling and permutation.

67 Dec 27, 2022
Flood modeling by 2D shallow water equation

hydraulicmodel Flood modeling by 2D shallow water equation. Refer to Hunter et al (2005), Bates et al. (2010). Diffusive wave approximation Local iner

6 Nov 30, 2022
The official pytorch implementation of ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias

ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias Introduction | Updates | Usage | Results&Pretrained Models | Statement | Intr

104 Nov 27, 2022
CSV database for chihuahua (HUAHUA) blockchain transactions

super-fiesta Shamelessly ripped components from https://github.com/hodgerpodger/staketaxcsv - Thanks for doing all the hard work. This code does only

Arlene Macciaveli 1 Jan 07, 2022
Streamz helps you build pipelines to manage continuous streams of data

Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelines that involve branching, joining, flow control, feedbac

Python Streamz 1.1k Dec 28, 2022
Datashredder is a simple data corruption engine written in python. You can corrupt anything text, images and video.

Datashredder is a simple data corruption engine written in python. You can corrupt anything text, images and video. You can chose the cha

2 Jul 22, 2022
ForecastGA is a Python tool to forecast Google Analytics data using several popular time series models.

ForecastGA is a tool that combines a couple of popular libraries, Atspy and googleanalytics, with a few enhancements.

JR Oakes 36 Jan 03, 2023
Building house price data pipelines with Apache Beam and Spark on GCP

This project contains the process from building a web crawler to extract the raw data of house price to create ETL pipelines using Google Could Platform services.

1 Nov 22, 2021
A pipeline that creates consensus sequences from a Nanopore reads. I

A pipeline that creates consensus sequences from a Nanopore reads. It clusters reads that are similar to each other and creates a consensus that is then identified using BLAST.

Ada Madejska 2 May 15, 2022
Hidden Markov Models in Python, with scikit-learn like API

hmmlearn hmmlearn is a set of algorithms for unsupervised learning and inference of Hidden Markov Models. For supervised learning learning of HMMs and

2.7k Jan 03, 2023
Data Analytics: Modeling and Studying data relating to climate change and adoption of electric vehicles

Correlation-Study-Climate-Change-EV-Adoption Data Analytics: Modeling and Studying data relating to climate change and adoption of electric vehicles I

Jonathan Feng 1 Jan 03, 2022
Stochastic Gradient Trees implementation in Python

Stochastic Gradient Trees - Python Stochastic Gradient Trees1 by Henry Gouk, Bernhard Pfahringer, and Eibe Frank implementation in Python. Based on th

John Koumentis 2 Nov 18, 2022
A lightweight interface for reading in output from the Weather Research and Forecasting (WRF) model into xarray Dataset

xwrf A lightweight interface for reading in output from the Weather Research and Forecasting (WRF) model into xarray Dataset. The primary objective of

National Center for Atmospheric Research 43 Nov 29, 2022
A Streamlit web-app for a data-science project that aims to evaluate if the answer to a question is helpful.

How useful is the aswer? A Streamlit web-app for a data-science project that aims to evaluate if the answer to a question is helpful. If you want to l

1 Dec 17, 2021