A webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV.

Overview

Qbr

Qbr, pronounced as Cuber, is a webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV.

  • 🌈 Accurate color detection
  • 🔍 Accurate 3x3x3 rubik's cube detection
  • 🔠 Multilingual

Solve mode

solve mode

Calibrate mode

Isn't the default color detection working out for you? Use the calibrate mode to let Qbr be familiar with your cube's color scheme. If your room has proper lighting then this will give you a 99.9% guarantee that your colors will be detected properly.

Simply follow the on-screen instructions and you're ready to go.

calibrate mode calibrate mode success

Table of Contents

Introduction

The idea to create this came personally to mind when I started solving rubik's cubes. There were already so many professional programmers around the world who created robots that solve a rubik's cube in an ETA of 5 seconds and since 2016 in 1 second (link). That inspired me to create my own. I started using images only and eventually switched to webcam.

Installation

$ git clone --depth 1 https://github.com/kkoomen/qbr.git
$ cd qbr
$ python3 -m venv env
$ source ./env/bin/activate
$ pip3 install -r requirements.txt

Usage

Make sure you run source ./env/bin/activate every time you want to run the program.

Run Qbr:

$ ./src/qbr.py

This opens a webcam interface with the following things:

The first 9-sticker display (upper left corner)

This is preview mode. This will update immediately and display how Qbr has detected the colors.

The second 9-sticker display (upper left corner)

This is the snapshot state. When pressing SPACE it will create a snapshot in order to show you what state it has saved. You can press SPACE as many times as you'd like if it has been detected wrong.

Amount of sides scanned (bottom left corner)

The bottom left corner shows the amount of sides scanned. This is so you know if you've scanned in all sides before pressing ESC.

Interface language (top right corner)

In the top right corner you can see the current interface language. If you want to change the interface language you can press l to cycle through them. Continue to press l until you've found the right language.

Default language is set to English.

Available languages are:

  • English
  • Hungarian
  • Deutsch
  • French
  • Dutch
  • 简体中文

Full 2D cube state visualization (bottom right corner)

This visualization represents the whole cube state that is being saved and can be used to confirm whether the whole cube state has been scanned successfully.

Calibrate mode

The default color scheme contains the most prominent colors for white, yellow, red, orange, blue and green. If this can't detect your cube its colors properly then you can use calibrate mode.

Press c to go into calibrate mode in order to let Qbr be familiar with your cube's color scheme. Simply follow the on-screen instructions and you're ready to go.

Note: Your calibrated settings are automatically saved after you've calibrated your cube successfully. The next time you start Qbr it will automatically load it.

Tip: If you've scanned wrong, simple go out of calibrate mode by pressing c and go back into calibrate by pressing c again.

Getting the solution

Qbr checks if you have filled in all 6 sides when pressing ESC. If so, it'll calculate a solution if you've scanned it correctly.

You should now see a solution (or an error if you did it wrong).

How to scan your cube properly?

There is a strict way of scanning in the cube. Qbr will detect the side automatically, but the way you rotate the cube during the time you're scanning it is crucial in order for Qbr to properly calculate a solution. Make sure to follow the steps below properly:

  • Start off with the green side facing the camera and white on top, green being away from you. Start by scanning in the green side at this point.
  • After you've scanned in the green side, rotate the cube 90 or -90 degrees horizontally. It doesn't matter if you go clockwise or counter-clockwise. Continue to do this for the green, blue, red and orange sides until you are back at the green side.
  • You should now be in the same position like you started, having green facing the camera and white on top. Rotate the cube forward 90 degrees, resulting in green at the bottom and white facing the camera. Start scanning in the white side.
  • After you've scanned the white side, turn the cube back to how you started, having green in front again and white on top. Now rotate the cube backwards 90 degrees, resulting in green on top and yellow facing the camera. Now you can scan in the last yellow side.

If you've done the steps above correctly, you should have a solution from Qbr.

Keybindings

  • SPACE for saving the current state

  • ESC quit

  • c toggle calibrate mode

  • l switch interface language

Paramaters

You can use -n or --normalize to also output the solution in a "human-readable" format.

For example:

  • R will be: Turn the right side a quarter turn away from you.
  • F2 will be: Turn the front face 180 degrees.

Example runs

$ ./qbr.py
Starting position:
front: green
top: white

Moves: 20
Solution: U2 R D2 L2 F2 L U2 L F' U L U R2 B2 U' F2 D2 R2 D2 R2
$ ./qbr.py -n
Starting position:
front: green
top: white

Moves: 20
Solution: B2 U2 F' R U D' L' B' U L F U F2 R2 F2 D' F2 D R2 D2
1. Turn the back side 180 degrees.
2. Turn the top layer 180 degrees.
3. Turn the front side a quarter turn to the left.
4. Turn the right side a quarter turn away from you.
5. Turn the top layer a quarter turn to the left.
6. Turn the bottom layer a quarter turn to the left.
7. Turn the left side a quarter turn away from you.
8. Turn the back side a quarter turn to the right.
9. Turn the top layer a quarter turn to the left.
10. Turn the left side a quarter turn towards you.
11. Turn the front side a quarter turn to the right.
12. Turn the top layer a quarter turn to the left.
13. Turn the front side 180 degrees.
14. Turn the right side 180 degrees.
15. Turn the front side 180 degrees.
16. Turn the bottom layer a quarter turn to the left.
17. Turn the front side 180 degrees.
18. Turn the bottom layer a quarter turn to the right.
19. Turn the right side 180 degrees.
20. Turn the bottom layer 180 degrees.

Inspirational sources

Special thanks to HaginCodes for the main inspiration on how to improve my color detection.

https://github.com/HaginCodes/3x3x3-Rubiks-Cube-Solver

http://programmablebrick.blogspot.com/2017/02/rubiks-cube-tracker-using-opencv.html

https://gist.github.com/flyboy74/2cc3097f784c8c236a1a85278f08cddd

https://github.com/dwalton76/rubiks-color-resolver

License

Qbr is licensed under the MIT License.

Owner
Kim 金可明
Vim enthusiast; polyglot programmer; fullstack software engineer; QA engineer
Kim 金可明
SRA's seminar on Introduction to Computer Vision Fundamentals

Introduction to Computer Vision This repository includes basics to : Python Numpy: A python library Git Computer Vision. The aim of this repository is

Society of Robotics and Automation 147 Dec 04, 2022
Scene text recognition

AttentionOCR for Arbitrary-Shaped Scene Text Recognition Introduction This is the ranked No.1 tensorflow based scene text spotting algorithm on ICDAR2

777 Jan 09, 2023
Generic framework for historical document processing

dhSegment dhSegment is a tool for Historical Document Processing. Its generic approach allows to segment regions and extract content from different ty

Digital Humanities Laboratory 343 Dec 24, 2022
Python package for handwriting and sketching in Jupyter cells

ipysketch A Python package for handwriting and sketching in Jupyter notebooks. Usage A movie is worth a thousand pictures is worth a million words...

Matthias Baer 16 Jan 05, 2023
基于图像识别的开源RPA工具,理论上可以支持所有windows软件和网页的自动化

SimpleRPA 基于图像识别的开源RPA工具,理论上可以支持所有windows软件和网页的自动化 简介 SimpleRPA是一款python语言编写的开源RPA工具(桌面自动控制工具),用户可以通过配置yaml格式的文件,来实现桌面软件的自动化控制,简化繁杂重复的工作,比如运营人员给用户发消息,

Song Hui 7 Jun 26, 2022
Repository for Scene Text Detection with Supervised Pyramid Context Network with tensorflow.

Scene-Text-Detection-with-SPCNET Unofficial repository for [Scene Text Detection with Supervised Pyramid Context Network][https://arxiv.org/abs/1811.0

121 Oct 15, 2021
When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework (CVPR 2021 oral)

MTLFace This repository contains the PyTorch implementation and the dataset of the paper: When Age-Invariant Face Recognition Meets Face Age Synthesis

Hzzone 120 Jan 05, 2023
Connect Aseprite to Blender for painting pixelart textures in real time

Pribambase Pribambase is a small tool that connects Aseprite and Blender, to allow painting with instant viewport feedback and all functionality of ex

117 Jan 03, 2023
Detect the mathematical formula from the given picture and the same formula is extracted and converted into the latex code

Mathematical formulae extractor The goal of this project is to create a learning based system that takes an image of a math formula and returns corres

6 May 22, 2022
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
Computer vision applications project (Flask and OpenCV)

Computer Vision Applications Project This project is at it's initial phase. This is all about the implementation of different computer vision techniqu

Suryam Thapa 1 Jan 26, 2022
caffe re-implementation of R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection

R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection Abstract This is a caffe re-implementation of R2CNN: Rotational Region CNN fo

candler 80 Dec 28, 2021
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
A simple python program to record security cam footage by detecting a face and body of a person in the frame.

SecurityCam A simple python program to record security cam footage by detecting a face and body of a person in the frame. This code was created by me,

1 Nov 08, 2021
A simple Security Camera created using Opencv in Python where images gets saved in realtime in your Dropbox account at every 5 seconds

Security Camera using Opencv & Dropbox This is a simple Security Camera created using Opencv in Python where images gets saved in realtime in your Dro

Arpit Rath 1 Jan 31, 2022
CTPN + DenseNet + CTC based end-to-end Chinese OCR implemented using tensorflow and keras

简介 基于Tensorflow和Keras实现端到端的不定长中文字符检测和识别 文本检测:CTPN 文本识别:DenseNet + CTC 环境部署 sh setup.sh 注:CPU环境执行前需注释掉for gpu部分,并解开for cpu部分的注释 Demo 将测试图片放入test_images

Yang Chenguang 2.6k Dec 29, 2022
👄 The most accurate natural language detection library for Java and the JVM, suitable for long and short text alike

Quick Info this library tries to solve language detection of very short words and phrases, even shorter than tweets makes use of both statistical and

Peter M. Stahl 532 Dec 28, 2022
An expandable and scalable OCR pipeline

Overview Nidaba is the central controller for the entire OGL OCR pipeline. It oversees and automates the process of converting raw images into citable

81 Jan 04, 2023
Give a solution to recognize MaoYan font.

猫眼字体识别 该 github repo 在于帮助xjtlu的同学们识别猫眼的扭曲字体。已经打包上传至 pypi ,可以使用 pip 直接安装。 猫眼字体的识别不出来的原理与解决思路在采茶上 使用方法: import MaoYanFontRecognize

Aruix 4 Jun 30, 2022
A simple demo program for using OpenCV on Android

Kivy OpenCV Demo A simple demo program for using OpenCV on Android Build with: buildozer android debug deploy run Run (on desktop) with: python main.p

Andrea Ranieri 13 Dec 29, 2022