Experiment about Deep Person Re-identification with EfficientNet-v2

Overview

deep-efficient-person-reid

Experiment for an uni project with strong baseline for Person Re-identification task.

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and CUHK03.


Pipeline

pipeline


Implementation Details

  • Random Erasing to transform input images.
  • EfficientNet-v2 / Resnet50 / Resnet50-IBN-A as backbone.
  • Stride = 1 for last convolution layer. Embedding size for Resnet50 / Resnet50-IBN-A is 2048, while for EfficientNet-v2 is 1280. During inference, embedding features will run through a batch norm layer, as known as a bottleneck for better normalization.
  • Loss function combining 3 losses:
    1. Triplet Loss with Hard Example Mining.
    2. Classification Loss (Cross Entropy) with Label Smoothing.
    3. Centroid Loss - Center Loss for reducing the distance of embeddings to its class center. When combining it with Classification Loss, it helps preventing embeddings from collapsing.
  • The default optimizer is AMSgrad with base learning rate of 3.5e-4 and multistep learning rate scheduler, decayed at epoch 30th and epoch 55th. Besides, we also apply mixed precision in training.
  • In both datasets, pretrained models were trained for 60 epochs and non-pretrained models were trained for 100 epochs.

Source Structure

.
├── config                  # hyperparameters settings
│   └── ...                 # yaml files
├
├── datasets                # data loader
│   └── ...           
├
├── market1501              # market-1501 dataset
|
├── cuhk03_release          # cuhk03 dataset
|
├── samplers                # random samplers
│   └── ...
|
├── loggers                 # test weights and visualization results      
|   └── runs
|   
├── losses                  # loss functions
│   └── ...   
|
├── nets                    # models
│   └── bacbones            
│       └── ... 
│   
├── engine                  # training and testing procedures
│   └── ...    
|
├── metrics                 # mAP and re-ranking
│   └── ...   
|
├── utils                   # wrapper and util functions 
│   └── ...
|
├── train.py                # train code 
|
├── test.py                 # test code 
|
├── visualize.py            # visualize results 

Pretrained Models (on ImageNet)

  • EfficientNet-v2: link
  • Resnet50-IBN-A: link

Notebook

  • Notebook to train, inference and visualize: Notebook

Setup


  • Install dependencies, change directory to dertorch:
pip install -r requirements.txt
cd dertorch/

  • Modify config files in /configs/. You can play with the parameters for better training, testing.

  • Training:
python train.py --config_file=name_of_config_file
Ex: python train.py --config_file=efficientnetv2_market

  • Testing: Save in /loggers/runs, for example the result from EfficientNet-v2 (Market-1501): link
python test.py --config_file=name_of_config_file
Ex: python test.py --config_file=efficientnetv2_market

  • Visualization: Save in /loggers/runs/results/, for example the result from EfficienNet-v2 (Market-1501): link
python visualize.py --config_file=name_of_config_file
Ex: python visualize.py --config_file=efficientnetv2_market

Examples


Query image 1 query1


Result image 1 result1


Query image 2 query2


Result image 2 result2


Results

  • Market-1501
Models Image Size mAP Rank-1 Rank-5 Rank-10 weights
Resnet50 (non-pretrained) 256x128 51.8 74.0 88.2 93.0 link
EfficientNet-v2 (non-pretrained) 256x128 56.5 78.5 91.1 94.4 link
Resnet50-IBN-A 256x128 77.1 90.7 97.0 98.4 link
EfficientNet-v2 256x128 69.7 87.1 95.3 97.2 link
Resnet50-IBN-A + Re-ranking 256x128 89.8 92.1 96.5 97.7 link
EfficientNet-v2 + Re-ranking 256x128 85.6 89.9 94.7 96.2 link

  • CUHK03:
Models Image Size mAP Rank-1 Rank-5 Rank-10 weights
Resnet50 (non-pretrained) ... ... ... ... ... ...
EfficientNet-v2 (non-pretrained) 256x128 10.1 10.1 21.1 29.5 link
Resnet50-IBN-A 256x128 41.2 41.8 63.1 71.2 link
EfficientNet-v2 256x128 40.6 42.9 63.1 72.5 link
Resnet50-IBN-A + Re-ranking 256x128 55.6 51.2 64.0 72.0 link
EfficientNet-v2 + Re-ranking 256x128 56.0 51.4 64.7 73.4 link

The results from EfficientNet-v2 models might be better if fine-tuning properly and longer training epochs, while here we use the best parameters for the ResNet models (on Market-1501 dataset) from this paper and only trained for 60 - 100 epochs.


Citation

@article{DBLP:journals/corr/abs-2104-13643,
  author    = {Mikolaj Wieczorek and
               Barbara Rychalska and
               Jacek Dabrowski},
  title     = {On the Unreasonable Effectiveness of Centroids in Image Retrieval},
  journal   = {CoRR},
  volume    = {abs/2104.13643},
  year      = {2021},
  url       = {https://arxiv.org/abs/2104.13643},
  archivePrefix = {arXiv},
  eprint    = {2104.13643},
  timestamp = {Tue, 04 May 2021 15:12:43 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2104-13643.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
@InProceedings{Luo_2019_CVPR_Workshops,
author = {Luo, Hao and Gu, Youzhi and Liao, Xingyu and Lai, Shenqi and Jiang, Wei},
title = {Bag of Tricks and a Strong Baseline for Deep Person Re-Identification},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2019}
}

Adapted from: michuanhaohao

Owner
lan.nguyen2k
Tensor Boy
lan.nguyen2k
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Udit Arora 19 Oct 28, 2022
Official pytorch code for "APP: Anytime Progressive Pruning"

APP: Anytime Progressive Pruning Diganta Misra1,2,3, Bharat Runwal2,4, Tianlong Chen5, Zhangyang Wang5, Irina Rish1,3 1 Mila - Quebec AI Institute,2 L

Landskape AI 12 Nov 22, 2022
True per-item rarity for Loot

True-Rarity True per-item rarity for Loot (For Adventurers) and More Loot A.K.A mLoot each out/true_rarity_{item_type}.json file contains probabilitie

Dan R. 3 Jul 26, 2022
Head and Neck Tumour Segmentation and Prediction of Patient Survival Project

Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival Welcome to the Head and Neck Tumour Segmentation and Prediction of Patient Surviv

5 Oct 20, 2022
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥

ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage

AI4Finance Foundation 2.5k Jan 05, 2023
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF

Simon Meister 270 Nov 06, 2022
Optimized primitives for collective multi-GPU communication

NCCL Optimized primitives for inter-GPU communication. Introduction NCCL (pronounced "Nickel") is a stand-alone library of standard communication rout

NVIDIA Corporation 2k Jan 09, 2023
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
The first public PyTorch implementation of Attentive Recurrent Comparators

arc-pytorch PyTorch implementation of Attentive Recurrent Comparators by Shyam et al. A blog explaining Attentive Recurrent Comparators Visualizing At

Sanyam Agarwal 150 Oct 14, 2022
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) Li Xiang 28 Dec 21, 2022

Simple Linear 2nd ODE Solver GUI - A 2nd constant coefficient linear ODE solver with simple GUI using euler's method

Simple_Linear_2nd_ODE_Solver_GUI Description It is a 2nd constant coefficient li

:) 4 Feb 05, 2022
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
A knowledge base construction engine for richly formatted data

Fonduer is a Python package and framework for building knowledge base construction (KBC) applications from richly formatted data. Note that Fonduer is

HazyResearch 386 Dec 05, 2022
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
Code for Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021)

Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021) Hang Zhou, Yasheng Sun, Wayne Wu, Chen Cha

Hang_Zhou 628 Dec 28, 2022
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022