Experiment about Deep Person Re-identification with EfficientNet-v2

Overview

deep-efficient-person-reid

Experiment for an uni project with strong baseline for Person Re-identification task.

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and CUHK03.


Pipeline

pipeline


Implementation Details

  • Random Erasing to transform input images.
  • EfficientNet-v2 / Resnet50 / Resnet50-IBN-A as backbone.
  • Stride = 1 for last convolution layer. Embedding size for Resnet50 / Resnet50-IBN-A is 2048, while for EfficientNet-v2 is 1280. During inference, embedding features will run through a batch norm layer, as known as a bottleneck for better normalization.
  • Loss function combining 3 losses:
    1. Triplet Loss with Hard Example Mining.
    2. Classification Loss (Cross Entropy) with Label Smoothing.
    3. Centroid Loss - Center Loss for reducing the distance of embeddings to its class center. When combining it with Classification Loss, it helps preventing embeddings from collapsing.
  • The default optimizer is AMSgrad with base learning rate of 3.5e-4 and multistep learning rate scheduler, decayed at epoch 30th and epoch 55th. Besides, we also apply mixed precision in training.
  • In both datasets, pretrained models were trained for 60 epochs and non-pretrained models were trained for 100 epochs.

Source Structure

.
├── config                  # hyperparameters settings
│   └── ...                 # yaml files
├
├── datasets                # data loader
│   └── ...           
├
├── market1501              # market-1501 dataset
|
├── cuhk03_release          # cuhk03 dataset
|
├── samplers                # random samplers
│   └── ...
|
├── loggers                 # test weights and visualization results      
|   └── runs
|   
├── losses                  # loss functions
│   └── ...   
|
├── nets                    # models
│   └── bacbones            
│       └── ... 
│   
├── engine                  # training and testing procedures
│   └── ...    
|
├── metrics                 # mAP and re-ranking
│   └── ...   
|
├── utils                   # wrapper and util functions 
│   └── ...
|
├── train.py                # train code 
|
├── test.py                 # test code 
|
├── visualize.py            # visualize results 

Pretrained Models (on ImageNet)

  • EfficientNet-v2: link
  • Resnet50-IBN-A: link

Notebook

  • Notebook to train, inference and visualize: Notebook

Setup


  • Install dependencies, change directory to dertorch:
pip install -r requirements.txt
cd dertorch/

  • Modify config files in /configs/. You can play with the parameters for better training, testing.

  • Training:
python train.py --config_file=name_of_config_file
Ex: python train.py --config_file=efficientnetv2_market

  • Testing: Save in /loggers/runs, for example the result from EfficientNet-v2 (Market-1501): link
python test.py --config_file=name_of_config_file
Ex: python test.py --config_file=efficientnetv2_market

  • Visualization: Save in /loggers/runs/results/, for example the result from EfficienNet-v2 (Market-1501): link
python visualize.py --config_file=name_of_config_file
Ex: python visualize.py --config_file=efficientnetv2_market

Examples


Query image 1 query1


Result image 1 result1


Query image 2 query2


Result image 2 result2


Results

  • Market-1501
Models Image Size mAP Rank-1 Rank-5 Rank-10 weights
Resnet50 (non-pretrained) 256x128 51.8 74.0 88.2 93.0 link
EfficientNet-v2 (non-pretrained) 256x128 56.5 78.5 91.1 94.4 link
Resnet50-IBN-A 256x128 77.1 90.7 97.0 98.4 link
EfficientNet-v2 256x128 69.7 87.1 95.3 97.2 link
Resnet50-IBN-A + Re-ranking 256x128 89.8 92.1 96.5 97.7 link
EfficientNet-v2 + Re-ranking 256x128 85.6 89.9 94.7 96.2 link

  • CUHK03:
Models Image Size mAP Rank-1 Rank-5 Rank-10 weights
Resnet50 (non-pretrained) ... ... ... ... ... ...
EfficientNet-v2 (non-pretrained) 256x128 10.1 10.1 21.1 29.5 link
Resnet50-IBN-A 256x128 41.2 41.8 63.1 71.2 link
EfficientNet-v2 256x128 40.6 42.9 63.1 72.5 link
Resnet50-IBN-A + Re-ranking 256x128 55.6 51.2 64.0 72.0 link
EfficientNet-v2 + Re-ranking 256x128 56.0 51.4 64.7 73.4 link

The results from EfficientNet-v2 models might be better if fine-tuning properly and longer training epochs, while here we use the best parameters for the ResNet models (on Market-1501 dataset) from this paper and only trained for 60 - 100 epochs.


Citation

@article{DBLP:journals/corr/abs-2104-13643,
  author    = {Mikolaj Wieczorek and
               Barbara Rychalska and
               Jacek Dabrowski},
  title     = {On the Unreasonable Effectiveness of Centroids in Image Retrieval},
  journal   = {CoRR},
  volume    = {abs/2104.13643},
  year      = {2021},
  url       = {https://arxiv.org/abs/2104.13643},
  archivePrefix = {arXiv},
  eprint    = {2104.13643},
  timestamp = {Tue, 04 May 2021 15:12:43 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2104-13643.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
@InProceedings{Luo_2019_CVPR_Workshops,
author = {Luo, Hao and Gu, Youzhi and Liao, Xingyu and Lai, Shenqi and Jiang, Wei},
title = {Bag of Tricks and a Strong Baseline for Deep Person Re-Identification},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2019}
}

Adapted from: michuanhaohao

Owner
lan.nguyen2k
Tensor Boy
lan.nguyen2k
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022
The repo of the preprinting paper "Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection"

Inferring Spatial Uncertainty in Object Detection A teaser version of the code for the paper Labels Are Not Perfect: Inferring Spatial Uncertainty in

ZINING WANG 21 Mar 03, 2022
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
WarpRNNT loss ported in Numba CPU/CUDA for Pytorch

RNNT loss in Pytorch - Numba JIT compiled (warprnnt_numba) Warp RNN Transducer Loss for ASR in Pytorch, ported from HawkAaron/warp-transducer and a re

Somshubra Majumdar 15 Oct 22, 2022
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022
AgML is a comprehensive library for agricultural machine learning

AgML is a comprehensive library for agricultural machine learning. Currently, AgML provides access to a wealth of public agricultural datasets for common agricultural deep learning tasks.

Plant AI and Biophysics Lab 1 Jul 07, 2022
Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks

flownet2-pytorch Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. Multiple GPU training is supported, a

NVIDIA Corporation 2.8k Dec 27, 2022
A toolkit for Lagrangian-based constrained optimization in Pytorch

Cooper About Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of

Cooper 34 Jan 01, 2023
PyTorch implementation of the paper: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features

Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features Estimate the noise transition matrix with f-mutual information. This co

<a href=[email protected]"> 1 Jun 05, 2022
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model This repository is the official PyTorch implementation of GraphRNN, a graph gene

Jiaxuan 568 Dec 29, 2022
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
The repository for freeCodeCamp's YouTube course, Algorithmic Trading in Python

Algorithmic Trading in Python This repository Course Outline Section 1: Algorithmic Trading Fundamentals What is Algorithmic Trading? The Differences

Nick McCullum 1.8k Jan 02, 2023
Using BERT+Bi-LSTM+CRF

Chinese Medical Entity Recognition Based on BERT+Bi-LSTM+CRF Step 1 I share the dataset on my google drive, please download the whole 'CCKS_2019_Task1

Xiang WU 55 Dec 21, 2022
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
The project of phase's key role in complex and real NN

Phase-in-NN This is the code for our project at Princeton (co-authors: Yuqi Nie, Hui Yuan). The paper title is: "Neural Network is heterogeneous: Phas

YuqiNie-lab 1 Nov 04, 2021
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Multiple-Object Tracking with Transformer

TransTrack: Multiple-Object Tracking with Transformer Introduction TransTrack: Multiple-Object Tracking with Transformer Models Training data Training

Peize Sun 537 Jan 04, 2023