An Insurance firm providing tour insurance is facing higher claim frequency

Overview

Insurance-Claim

An Insurance firm providing tour insurance is facing higher claim frequency. Data is collected from the past few years. Made a model which predicts the claim status using CART, RF & ANN and compare the models' performances in train and test sets.

EDA

Dataset has 10 variables and 3000 instances. 2 variables are float type and 2 are integer type. There are 6 object-type variables which need to be converted to numeric form. From the above data, it is evident that no null values are present in the data. The shape of the dataset is 3000,10.

Using the describe() function in Python, a summary of all the parameters can be obtained. Asia seems to have the most insurance claims. After the removal of the duplicated data, the outliers were calculated. The outliers were not treated since all numeric values have them and can be taken care of in random forest classification.

Pairplot was performed to check continuous variables Heatmap was performed to check correlation

Decision tree in Python can take only numerical / categorical colums. It cannot take string / object types. The feature statement loops through each column and checks if the column type is object then converts those columns into categorical with each distinct value becoming a category.

Split the data into test and train, to build classification model CART, Random Forest, Artificial Neural Network.

Built a decision tree and found the variable importance and predicted the test data. Added tuning parameters to regulise the decision tree and found the variable importance again. Found the prediting probabilities

Random Forest

Treated the model for outliers Predicted test and train data with RF model

MLP Classifier

Predicted using the training and testing data

ROC_AUC

Checked the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model.

Analysis

Looking at the model, more data will help us understand and predict models better. Streamlining online experiences benefitted customers, leading to an increase in conversions, which subsequently raised profits. As per the data 90% of insurance is done by online channel. Other interesting fact, is almost all the offline business has a claimed associated with it. Need to train the JZI agency resources to pick up sales as they are in bottom, need to run promotional marketing campaign or evaluate if we need to tie up with alternate agency. Also based on the model we are getting 80% accuracy, so we need customer books airline tickets or plans, cross sell the insurance based on the claim data pattern. Other interesting fact is more sales happen via Agency than Airlines and the trend shows the claim are processed more at Airline. So, we may need to dive deeper to understand the workflow. Key performance indicators (KPI) will increase customer satisfaction which in fact will give more revenue, combat fraud transactions, deploy measures to avoid fraudulent transactions at earliest as well as optimize claim-recovery method. It will also reduce the claim handling costs

Owner
MSBA Graduate Student at University of Illinois at Chicago | Passionate Analyst | SQL | Python | R programming | Tableau | Haddop
Github Star Tracking app with Streamlit

github-star-tracking-python-app Github Star Tracking app with Streamlit #8daysofstreamlit How to run it locally? Clone or Download & Unzip the Repo En

amrrs 4 Sep 22, 2022
Python wrapper to different clients to determine how a particular term is used.

Python wrapper to different clients to determine how a particular term is used.

Chris Mungall 3 Oct 24, 2022
Tool to automate the enumeration of a website (CTF)

had4ctf Tool to automate the enumeration of a website (CTF) DISCLAIMER: THE TOOL HAS BEEN DEVELOPED SOLELY FOR EDUCATIONAL PURPOSE ,I WILL NOT BE LIAB

Had 2 Oct 24, 2021
This suite consists of two different scripts, made to automate attacks against NoSQL databases.

NoSQL-Attack-Suite This suite consists of two different scripts, made to automate attacks against NoSQL databases. The first one looks for a NoSQL Aut

16 Dec 26, 2022
PyLaboratory 0 Feb 07, 2022
YunoHost is an operating system aiming to simplify as much as possible the administration of a server.

YunoHost is an operating system aiming to simplify as much as possible the administration of a server. This repository corresponds to the core code, written mostly in Python and Bash.

YunoHost 1.5k Jan 09, 2023
Project repository of Apache Airflow, deployed on Docker in Amazon EC2 via GitLab.

Airflow on Docker in EC2 + GitLab's CI/CD Personal project for simple data pipeline using Airflow. Airflow will be installed inside Docker container,

Ammar Chalifah 13 Nov 29, 2022
Account Manager / Nuker with GUI.

Account Manager / Nuker Remove all friends Block all friends Leave all servers Mass create servers Close all dms Mass dm Exit Setup git clone https://

Lodi#0001 1 Oct 23, 2021
General tricks that may help you find bad, or noisy, labels in your dataset

doubtlab A lab for bad labels. Warning still in progress. This repository contains general tricks that may help you find bad, or noisy, labels in your

vincent d warmerdam 449 Dec 26, 2022
Reproduction repository for the MDX 2021 Hybrid Demucs model

Submission This is the submission for MDX 2021 Track A, for Track B go to the track_b branch. Submission Summary Submission ID: 151378 Submitter: defo

Alexandre Défossez 62 Dec 18, 2022
Euler 021 Py - Euler Problem 021 solved in Python

Euler_021_Py Euler Problem 021 solved in Python Let d(n) be defined as the sum o

Ariel Tynan 1 Jan 24, 2022
tagls is a language server based on gtags.

tagls tagls is a language server based on gtags. Why I wrote it? Almost all modern editors have great support to LSP, but language servers based on se

daquexian 31 Dec 01, 2022
Скрипт позволяет выгрузить участников чатов/каналов(по чату для комментариев) и сообщения в различные форматы файлов.

TG-Parser Парсер участников и сообщений из ТГ-Чатов и чатов для комментариев в ТГ-Каналах Возможности Выгрузка участников групп/каналов(по чату для ко

50 Jan 06, 2023
About A python based Apple Quicktime protocol,you can record audio and video from real iOS devices

介绍 本应用程序使用 python 实现,可以通过 USB 连接 iOS 设备进行屏幕共享 高帧率(30〜60fps) 高画质 低延迟(200ms) 非侵入性 支持多设备并行 Mac OSX 安装 python =3.7 brew install libusb pkg-config 如需使用 g

YueC 124 Nov 30, 2022
An Insurance firm providing tour insurance is facing higher claim frequency

An Insurance firm providing tour insurance is facing higher claim frequency. Data is collected from the past few years. Made a model which predicts the claim status using CART, RF & ANN and compare t

1 Jan 27, 2022
🐍 This snake helps you reconnect the Web, with RSS feeds!

This snake helps you reconnect the Web, with RSS feeds! RSSerpent is an open-source software that create RSS feeds for websites that do not provide an

211 Dec 08, 2022
Syarat.ID Source Code - Syarat.ID is a content aggregator website

Syarat.ID is a content aggregator website that gathering all informations with the specific keyword: "syarat" from the internet.

Syarat.ID 2 Oct 15, 2021
プレヤフHackUチーム「キャット・タン」が作成したアプリ「illustection」

cat_tongue_illustection プレヤフHackUチーム「キャット・タン」が作成した, プライバシー保護アプリ「illustection」です! デモ動画 https://youtu.be/z3I7LuB_i58 機能 アップロードされた画像をいい感じのイラストやの素材に置き換える(

4 Jul 03, 2021
Box CRUD API With Python

Box CRUD API: Consider a store which has an inventory of boxes which are all cuboid(which have length breadth and height). Each Cuboid has been added

Akhil Bhalerao 3 Feb 17, 2022
Logo DYS (Doküman Yönetim Sitemi) API Python Implementation

dys-connector Logo DYS (Dokuman Yonetim Sistemi) API Python Implementation Python Package: https://pypi.org/project/dys-connector Quick Start from dys

Logo Group 8 Mar 19, 2022