Dataset and codebase for NeurIPS 2021 paper: Exploring Forensic Dental Identification with Deep Learning

Related tags

Deep LearningFoID
Overview

Repository under construction. Example dataset, checkpoints, and training/testing scripts will be avaible soon!

πŸ’‘ Collated best practices from most popular ML research repositories - now official guidelines at NeurIPS 2021!

Based on analysis of more than 200 Machine Learning repositories, these recommendations facilitate reproducibility and correlate with GitHub stars - for more details, see our our blog post.

For NeurIPS 2021 code submissions it is recommended (but not mandatory) to use the README.md template and check as many items on the ML Code Completeness Checklist (described below) as possible.

πŸ“‹ README.md template

We provide a README.md template that you can use for releasing ML research repositories. The sections in the template were derived by looking at existing repositories, seeing which had the best reception in the community, and then looking at common components that correlate with popularity.

βœ“ ML Code Completeness Checklist

We compiled this checklist by looking at what's common to the most popular ML research repositories. In addition, we prioritized items that facilitate reproducibility and make it easier for others build upon research code.

The ML Code Completeness Checklist consists of five items:

  1. Specification of dependencies
  2. Training code
  3. Evaluation code
  4. Pre-trained models
  5. README file including table of results accompanied by precise commands to run/produce those results

We verified that repositories that check more items on the checklist also tend to have a higher number of GitHub stars. This was verified by analysing official NeurIPS 2019 repositories - more details in the blog post. We also provide the data and notebook to reproduce this analysis from the post.

NeurIPS 2019 repositories that had all five of these components had the highest number of GitHub stars (median of 196 and mean of 2,664 stars).

We explain each item on the checklist in detail blow.

1. Specification of dependencies

If you are using Python, this means providing a requirements.txt file (if using pip and virtualenv), providing environment.yml file (if using anaconda), or a setup.py if your code is a library.

It is good practice to provide a section in your README.md that explains how to install these dependencies. Assume minimal background knowledge and be clear and comprehensive - if users cannot set up your dependencies they are likely to give up on the rest of your code as well.

If you wish to provide whole reproducible environments, you might want to consider using Docker and upload a Docker image of your environment into Dockerhub.

2. Training code

Your code should have a training script that can be used to obtain the principal results stated in the paper. This means you should include hyperparameters and any tricks that were used in the process of getting your results. To maximize usefulness, ideally this code should be written with extensibility in mind: what if your user wants to use the same training script on their own dataset?

You can provide a documented command line wrapper such as train.py to serve as a useful entry point for your users.

3. Evaluation code

Model evaluation and experiments often depend on subtle details that are not always possible to explain in the paper. This is why including the exact code you used to evaluate or run experiments is helpful to give a complete description of the procedure. In turn, this helps the user to trust, understand and build on your research.

You can provide a documented command line wrapper such as eval.py to serve as a useful entry point for your users.

4. Pre-trained models

Training a model from scratch can be time-consuming and expensive. One way to increase trust in your results is to provide a pre-trained model that the community can evaluate to obtain the end results. This means users can see the results are credible without having to train afresh.

Another common use case is fine-tuning for downstream task, where it's useful to release a pretrained model so others can build on it for application to their own datasets.

Lastly, some users might want to try out your model to see if it works on some example data. Providing pre-trained models allows your users to play around with your work and aids understanding of the paper's achievements.

5. README file includes table of results accompanied by precise command to run to produce those results

Adding a table of results into README.md lets your users quickly understand what to expect from the repository (see the README.md template for an example). Instructions on how to reproduce those results (with links to any relevant scripts, pretrained models etc) can provide another entry point for the user and directly facilitate reproducibility. In some cases, the main result of a paper is a Figure, but that might be more difficult for users to understand without reading the paper.

You can further help the user understand and contextualize your results by linking back to the full leaderboard that has up-to-date results from other papers. There are multiple leaderboard services where this information is stored.

πŸŽ‰ Additional awesome resources for releasing research code

Hosting pretrained models files

  1. Zenodo - versioning, 50GB, free bandwidth, DOI, provides long-term preservation
  2. GitHub Releases - versioning, 2GB file limit, free bandwidth
  3. OneDrive - versioning, 2GB (free)/ 1TB (with Office 365), free bandwidth
  4. Google Drive - versioning, 15GB, free bandwidth
  5. Dropbox - versioning, 2GB (paid unlimited), free bandwidth
  6. AWS S3 - versioning, paid only, paid bandwidth
  7. huggingface_hub - versioning, no size limitations, free bandwidth
  8. DAGsHub - versioning, no size limitations, free bandwith
  9. CodaLab Worksheets - 10GB, free bandwith

Managing model files

  1. RClone - provides unified access to many different cloud storage providers

Standardized model interfaces

  1. PyTorch Hub
  2. Tensorflow Hub
  3. Hugging Face NLP models
  4. ONNX

Results leaderboards

  1. Papers with Code leaderboards - with 4000+ leaderboards
  2. CodaLab Competitions - with 450+ leaderboards
  3. EvalAI - with 100+ leaderboards
  4. NLP Progress - with 90+ leaderboards
  5. Collective Knowledge - with 40+ leaderboards
  6. Weights & Biases - Benchmarks - with 9+ leaderboards

Making project pages

  1. GitHub pages
  2. Fastpages

Making demos, tutorials, executable papers

  1. Google Colab
  2. Binder
  3. Streamlit
  4. CodaLab Worksheets

Contributing

If you'd like to contribute, or have any suggestions for these guidelines, you can contact us at [email protected] or open an issue on this GitHub repository.

All contributions welcome! All content in this repository is licensed under the MIT license.

AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms

A Closer Look at Invalid Action Masking in Policy Gradient Algorithms This repo contains the source code to reproduce the results in the paper A Close

Costa Huang 73 Dec 24, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485

python-pylontech Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485 What is this lib ? This lib is meant to talk to P

Frank 26 Dec 28, 2022
Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
A library that can print Python objects in human readable format

objprint A library that can print Python objects in human readable format Install pip install objprint Usage op Use op() (or objprint()) to print obj

319 Dec 25, 2022
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Subin An 8 Nov 21, 2022
Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022
Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Reinforcement Learning with Learned Fourier Features State-space Soft Actor-Critic Experiments Move to the state-SAC-LFF repository. cd state-SAC-LFF

Alex Li 10 Nov 11, 2022
SparseInst: Sparse Instance Activation for Real-Time Instance Segmentation, CVPR 2022

SparseInst πŸš€ A simple framework for real-time instance segmentation, CVPR 2022 by Tianheng Cheng, Xinggang Wang†, Shaoyu Chen, Wenqiang Zhang, Qian Z

Hust Visual Learning Team 458 Jan 05, 2023
Research into Forex price prediction from price history using Deep Sequence Modeling with Stacked LSTMs.

Forex Data Prediction via Recurrent Neural Network Deep Sequence Modeling Research Paper Our research paper can be viewed here Installation Clone the

Alex Taradachuk 2 Aug 07, 2022
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
As-ViT: Auto-scaling Vision Transformers without Training

As-ViT: Auto-scaling Vision Transformers without Training [PDF] Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, Denny Zhou In ICLR 2

VITA 68 Sep 05, 2022
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It or

airctic 789 Dec 29, 2022
Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Dominic Rampas 247 Dec 16, 2022
Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques

Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques This repository is derived from the NMTGMinor

Tu Anh Dinh 1 Sep 07, 2022