LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

Overview

LiDAR Distillation

Paper | Model


LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection
Yi Wei, Zibu Wei, Yongming Rao, Jiaxin Li, Jiwen Lu, Jie Zhou

Introduction

In this paper, we propose the LiDAR Distillation to bridge the domain gap induced by different LiDAR beams for 3D object detection. In many real-world applications, the LiDAR points used by mass-produced robots and vehicles usually have fewer beams than that in large-scale public datasets. Moreover, as the LiDARs are upgraded to other product models with different beam amount, it becomes challenging to utilize the labeled data captured by previous versions’ high-resolution sensors. Despite the recent progress on domain adaptive 3D detection, most methods struggle to eliminate the beam-induced domain gap.

Model Zoo

Cross-dataset Adaptation

model method AP_BEV AP_3D
SECOND-IoU Direct transfer 32.91 17.24
SECOND-IoU ST3D 35.92 20.19
SECOND-IoU Ours 40.66 22.86
SECOND-IoU Ours (w / ST3D) 42.04 24.50
PV-RCNN Direct transfer 34.50 21.47
PV-RCNN ST3D 36.42 22.99
PV-RCNN Ours 43.31 25.63
PV-RCNN Ours (w / ST3D) 44.08 26.37
PointPillar Direct transfer 27.8 12.1
PointPillar ST3D 30.6 15.6
PointPillar Ours 40.23 19.12
PointPillar Ours (w / ST3D) 40.83 20.97

Results of cross-dataset adaptation from Waymo to nuScenes. The training Waymo data used in our work is version 1.0.

Single-dataset Adaptation

beams method AP_BEV AP_3D
32 Direct transfer 79.81 65.91
32 ST3D 71.29 57.57
32 Ours 82.22 70.15
32* Direct transfer 73.56 57.77
32* ST3D 67.08 53.30
32* Ours 79.47 66.96
16 Direct transfer 64.91 47.48
16 ST3D 57.58 42.40
16 Ours 74.32 59.87
16* Direct transfer 56.32 38.75
16* ST3D 55.63 37.02
16* Ours 70.43 55.24

Results of single-dataset adaptation on KITTI dataset with PointPillars (moderate difficulty). For SECOND-IoU and PV-RCNN, we find that it is easy to raise cuda error on low-beam data, which is may caused by the bug in spconv. Thus, we do not provide the model but you can still run these experiments with the yamls.

Installation

Please refer to INSTALL.md.

Getting Started

Please refer to GETTING_STARTED.md.

License

Our code is released under the Apache 2.0 license.

Acknowledgement

Our code is heavily based on OpenPCDet v0.2 and ST3D. Thanks OpenPCDet Development Team for their awesome codebase.

Citation

If you find this project useful in your research, please consider cite:

@article{wei2022lidar,
  title={LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection},
  author={Wei, Yi and Wei, Zibu and Rao, Yongming and Li, Jiaxin and Zhou, Jie and Lu, Jiwen},
  journal={arXiv preprint arXiv:2203.14956},
  year={2022}
}
@misc{openpcdet2020,
    title={OpenPCDet: An Open-source Toolbox for 3D Object Detection from Point Clouds},
    author={OpenPCDet Development Team},
    howpublished = {\url{https://github.com/open-mmlab/OpenPCDet}},
    year={2020}
}
Owner
Yi Wei
Yi Wei
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.

ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr

Fredrik Gustafsson 10 Oct 22, 2022
Code for intrusion detection system (IDS) development using CNN models and transfer learning

Intrusion-Detection-System-Using-CNN-and-Transfer-Learning This is the code for the paper entitled "A Transfer Learning and Optimized CNN Based Intrus

Western OC2 Lab 38 Dec 12, 2022
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.

Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai

SRI Lab, ETH Zurich 25 Sep 14, 2022
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 138 Dec 28, 2022
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023
SARS-Cov-2 Recombinant Finder for fasta sequences

Sc2rf - SARS-Cov-2 Recombinant Finder Pronounced: Scarf What's this? Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new

Lena Schimmel 41 Oct 03, 2022
MPViT:Multi-Path Vision Transformer for Dense Prediction

MPViT : Multi-Path Vision Transformer for Dense Prediction This repository inlcu

Youngwan Lee 272 Dec 20, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions

Agar.io_Q-Learning_AI An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available act

1 Jun 09, 2022
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees" Installa

0 Oct 13, 2021
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

Liming Jiang 238 Nov 25, 2022
Accurate Phylogenetic Inference with Symmetry-Preserving Neural Networks

Accurate Phylogenetic Inference with a Symmetry-preserving Neural Network Model Claudia Solis-Lemus Shengwen Yang Leonardo Zepeda-Núñez This repositor

Leonardo Zepeda-Núñez 2 Feb 11, 2022
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 08, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022
Classify the disease status of a plant given an image of a passion fruit

Passion Fruit Disease Detection I tried to create an accurate machine learning models capable of localizing and identifying multiple Passion Fruits in

3 Nov 09, 2021
BankNote-Net: Open dataset and encoder model for assistive currency recognition

BankNote-Net: Open Dataset for Assistive Currency Recognition Millions of people around the world have low or no vision. Assistive software applicatio

Microsoft 13 Oct 28, 2022
Character Controllers using Motion VAEs

Character Controllers using Motion VAEs This repo is the codebase for the SIGGRAPH 2020 paper with the title above. Please find the paper and demo at

Electronic Arts 165 Jan 03, 2023