LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

Overview

LiDAR Distillation

Paper | Model


LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection
Yi Wei, Zibu Wei, Yongming Rao, Jiaxin Li, Jiwen Lu, Jie Zhou

Introduction

In this paper, we propose the LiDAR Distillation to bridge the domain gap induced by different LiDAR beams for 3D object detection. In many real-world applications, the LiDAR points used by mass-produced robots and vehicles usually have fewer beams than that in large-scale public datasets. Moreover, as the LiDARs are upgraded to other product models with different beam amount, it becomes challenging to utilize the labeled data captured by previous versions’ high-resolution sensors. Despite the recent progress on domain adaptive 3D detection, most methods struggle to eliminate the beam-induced domain gap.

Model Zoo

Cross-dataset Adaptation

model method AP_BEV AP_3D
SECOND-IoU Direct transfer 32.91 17.24
SECOND-IoU ST3D 35.92 20.19
SECOND-IoU Ours 40.66 22.86
SECOND-IoU Ours (w / ST3D) 42.04 24.50
PV-RCNN Direct transfer 34.50 21.47
PV-RCNN ST3D 36.42 22.99
PV-RCNN Ours 43.31 25.63
PV-RCNN Ours (w / ST3D) 44.08 26.37
PointPillar Direct transfer 27.8 12.1
PointPillar ST3D 30.6 15.6
PointPillar Ours 40.23 19.12
PointPillar Ours (w / ST3D) 40.83 20.97

Results of cross-dataset adaptation from Waymo to nuScenes. The training Waymo data used in our work is version 1.0.

Single-dataset Adaptation

beams method AP_BEV AP_3D
32 Direct transfer 79.81 65.91
32 ST3D 71.29 57.57
32 Ours 82.22 70.15
32* Direct transfer 73.56 57.77
32* ST3D 67.08 53.30
32* Ours 79.47 66.96
16 Direct transfer 64.91 47.48
16 ST3D 57.58 42.40
16 Ours 74.32 59.87
16* Direct transfer 56.32 38.75
16* ST3D 55.63 37.02
16* Ours 70.43 55.24

Results of single-dataset adaptation on KITTI dataset with PointPillars (moderate difficulty). For SECOND-IoU and PV-RCNN, we find that it is easy to raise cuda error on low-beam data, which is may caused by the bug in spconv. Thus, we do not provide the model but you can still run these experiments with the yamls.

Installation

Please refer to INSTALL.md.

Getting Started

Please refer to GETTING_STARTED.md.

License

Our code is released under the Apache 2.0 license.

Acknowledgement

Our code is heavily based on OpenPCDet v0.2 and ST3D. Thanks OpenPCDet Development Team for their awesome codebase.

Citation

If you find this project useful in your research, please consider cite:

@article{wei2022lidar,
  title={LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection},
  author={Wei, Yi and Wei, Zibu and Rao, Yongming and Li, Jiaxin and Zhou, Jie and Lu, Jiwen},
  journal={arXiv preprint arXiv:2203.14956},
  year={2022}
}
@misc{openpcdet2020,
    title={OpenPCDet: An Open-source Toolbox for 3D Object Detection from Point Clouds},
    author={OpenPCDet Development Team},
    howpublished = {\url{https://github.com/open-mmlab/OpenPCDet}},
    year={2020}
}
Owner
Yi Wei
Yi Wei
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022
A PyTorch implementation of the Relational Graph Convolutional Network (RGCN).

Torch-RGCN Torch-RGCN is a PyTorch implementation of the RGCN, originally proposed by Schlichtkrull et al. in Modeling Relational Data with Graph Conv

Thiviyan Singam 66 Nov 30, 2022
House_prices_kaggle - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

Gurpreet Singh 1 Jan 01, 2022
Deep Learning to Improve Breast Cancer Detection on Screening Mammography

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Deep Learning to Improve Breast

Li Shen 305 Jan 03, 2023
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
Fuwa-http - The http client implementation for the fuwa eco-system

Fuwa HTTP The HTTP client implementation for the fuwa eco-system Example import

Fuwa 2 Feb 16, 2022
🧑‍🔬 verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Fernando Pérez-García 1.6k Jan 06, 2023
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
SOTA model in CIFAR10

A PyTorch Implementation of CIFAR Tricks 调研了CIFAR10数据集上各种trick,数据增强,正则化方法,并进行了实现。目前项目告一段落,如果有更好的想法,或者希望一起维护这个项目可以提issue或者在我的主页找到我的联系方式。 0. Requirement

PJDong 58 Dec 21, 2022
A generator of point clouds dataset for PyPipes.

CloudPipesGenerator Documentation | Colab Notebooks | Video Tutorials | Master Degree website A generator of point clouds dataset for PyPipes. TODO Us

1 Jan 13, 2022
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble

Qing Guo 146 Dec 31, 2022
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps[AAAI2021]

Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps Here is the code for ssbassline model. We also provide OCR results/features/mode

ZephyrZhuQi 51 Nov 18, 2022
My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs (GNN, GAT, GraphSAGE, GCN)

machine-learning-with-graphs My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs Course materials can be

Marko Njegomir 7 Dec 14, 2022