Compute distance between sequences. 30+ algorithms, pure python implementation, common interface, optional external libs usage.

Overview

TextDistance

TextDistance logo

Build Status PyPI version Status License

TextDistance -- python library for comparing distance between two or more sequences by many algorithms.

Features:

  • 30+ algorithms
  • Pure python implementation
  • Simple usage
  • More than two sequences comparing
  • Some algorithms have more than one implementation in one class.
  • Optional numpy usage for maximum speed.

Algorithms

Edit based

Algorithm Class Functions
Hamming Hamming hamming
MLIPNS Mlipns mlipns
Levenshtein Levenshtein levenshtein
Damerau-Levenshtein DamerauLevenshtein damerau_levenshtein
Jaro-Winkler JaroWinkler jaro_winkler, jaro
Strcmp95 StrCmp95 strcmp95
Needleman-Wunsch NeedlemanWunsch needleman_wunsch
Gotoh Gotoh gotoh
Smith-Waterman SmithWaterman smith_waterman

Token based

Algorithm Class Functions
Jaccard index Jaccard jaccard
Sørensen–Dice coefficient Sorensen sorensen, sorensen_dice, dice
Tversky index Tversky tversky
Overlap coefficient Overlap overlap
Tanimoto distance Tanimoto tanimoto
Cosine similarity Cosine cosine
Monge-Elkan MongeElkan monge_elkan
Bag distance Bag bag

Sequence based

Algorithm Class Functions
longest common subsequence similarity LCSSeq lcsseq
longest common substring similarity LCSStr lcsstr
Ratcliff-Obershelp similarity RatcliffObershelp ratcliff_obershelp

Compression based

Normalized compression distance with different compression algorithms.

Classic compression algorithms:

Algorithm Class Function
Arithmetic coding ArithNCD arith_ncd
RLE RLENCD rle_ncd
BWT RLE BWTRLENCD bwtrle_ncd

Normal compression algorithms:

Algorithm Class Function
Square Root SqrtNCD sqrt_ncd
Entropy EntropyNCD entropy_ncd

Work in progress algorithms that compare two strings as array of bits:

Algorithm Class Function
BZ2 BZ2NCD bz2_ncd
LZMA LZMANCD lzma_ncd
ZLib ZLIBNCD zlib_ncd

See blog post for more details about NCD.

Phonetic

Algorithm Class Functions
MRA MRA mra
Editex Editex editex

Simple

Algorithm Class Functions
Prefix similarity Prefix prefix
Postfix similarity Postfix postfix
Length distance Length length
Identity similarity Identity identity
Matrix similarity Matrix matrix

Installation

Stable

Only pure python implementation:

pip install textdistance

With extra libraries for maximum speed:

pip install "textdistance[extras]"

With all libraries (required for benchmarking and testing):

pip install "textdistance[benchmark]"

With algorithm specific extras:

pip install "textdistance[Hamming]"

Algorithms with available extras: DamerauLevenshtein, Hamming, Jaro, JaroWinkler, Levenshtein.

Dev

Via pip:

pip install -e git+https://github.com/life4/textdistance.git#egg=textdistance

Or clone repo and install with some extras:

git clone https://github.com/life4/textdistance.git
pip install -e ".[benchmark]"

Usage

All algorithms have 2 interfaces:

  1. Class with algorithm-specific params for customizing.
  2. Class instance with default params for quick and simple usage.

All algorithms have some common methods:

  1. .distance(*sequences) -- calculate distance between sequences.
  2. .similarity(*sequences) -- calculate similarity for sequences.
  3. .maximum(*sequences) -- maximum possible value for distance and similarity. For any sequence: distance + similarity == maximum.
  4. .normalized_distance(*sequences) -- normalized distance between sequences. The return value is a float between 0 and 1, where 0 means equal, and 1 totally different.
  5. .normalized_similarity(*sequences) -- normalized similarity for sequences. The return value is a float between 0 and 1, where 0 means totally different, and 1 equal.

Most common init arguments:

  1. qval -- q-value for split sequences into q-grams. Possible values:
    • 1 (default) -- compare sequences by chars.
    • 2 or more -- transform sequences to q-grams.
    • None -- split sequences by words.
  2. as_set -- for token-based algorithms:
    • True -- t and ttt is equal.
    • False (default) -- t and ttt is different.

Examples

For example, Hamming distance:

import textdistance

textdistance.hamming('test', 'text')
# 1

textdistance.hamming.distance('test', 'text')
# 1

textdistance.hamming.similarity('test', 'text')
# 3

textdistance.hamming.normalized_distance('test', 'text')
# 0.25

textdistance.hamming.normalized_similarity('test', 'text')
# 0.75

textdistance.Hamming(qval=2).distance('test', 'text')
# 2

Any other algorithms have same interface.

Articles

A few articles with examples how to use textdistance in the real world:

Extra libraries

For main algorithms textdistance try to call known external libraries (fastest first) if available (installed in your system) and possible (this implementation can compare this type of sequences). Install textdistance with extras for this feature.

You can disable this by passing external=False argument on init:

import textdistance
hamming = textdistance.Hamming(external=False)
hamming('text', 'testit')
# 3

Supported libraries:

  1. abydos
  2. Distance
  3. jellyfish
  4. py_stringmatching
  5. pylev
  6. python-Levenshtein
  7. pyxDamerauLevenshtein

Algorithms:

  1. DamerauLevenshtein
  2. Hamming
  3. Jaro
  4. JaroWinkler
  5. Levenshtein

Benchmarks

Without extras installation:

algorithm library function time
DamerauLevenshtein jellyfish damerau_levenshtein_distance 0.00965294
DamerauLevenshtein pyxdameraulevenshtein damerau_levenshtein_distance 0.151378
DamerauLevenshtein pylev damerau_levenshtein 0.766461
DamerauLevenshtein textdistance DamerauLevenshtein 4.13463
DamerauLevenshtein abydos damerau_levenshtein 4.3831
Hamming Levenshtein hamming 0.0014428
Hamming jellyfish hamming_distance 0.00240262
Hamming distance hamming 0.036253
Hamming abydos hamming 0.0383933
Hamming textdistance Hamming 0.176781
Jaro Levenshtein jaro 0.00313561
Jaro jellyfish jaro_distance 0.0051885
Jaro py_stringmatching jaro 0.180628
Jaro textdistance Jaro 0.278917
JaroWinkler Levenshtein jaro_winkler 0.00319735
JaroWinkler jellyfish jaro_winkler 0.00540443
JaroWinkler textdistance JaroWinkler 0.289626
Levenshtein Levenshtein distance 0.00414404
Levenshtein jellyfish levenshtein_distance 0.00601647
Levenshtein py_stringmatching levenshtein 0.252901
Levenshtein pylev levenshtein 0.569182
Levenshtein distance levenshtein 1.15726
Levenshtein abydos levenshtein 3.68451
Levenshtein textdistance Levenshtein 8.63674

Total: 24 libs.

Yeah, so slow. Use TextDistance on production only with extras.

Textdistance use benchmark's results for algorithm's optimization and try to call fastest external lib first (if possible).

You can run benchmark manually on your system:

pip install textdistance[benchmark]
python3 -m textdistance.benchmark

TextDistance show benchmarks results table for your system and save libraries priorities into libraries.json file in TextDistance's folder. This file will be used by textdistance for calling fastest algorithm implementation. Default libraries.json already included in package.

Running tests

You can run tests via dephell:

curl -L dephell.org/install | python3
dephell venv create --env=pytest-external
dephell deps install --env=pytest-external
dephell venv run --env=pytest-external

Contributing

PRs are welcome!

  • Found a bug? Fix it!
  • Want to add more algorithms? Sure! Just make it with the same interface as other algorithms in the lib and add some tests.
  • Can make something faster? Great! Just avoid external dependencies and remember that everything should work not only with strings.
  • Something else that do you think is good? Do it! Just make sure that CI passes and everything from the README is still applicable (interface, features, and so on).
  • Have no time to code? Tell your friends and subscribers about textdistance. More users, more contributions, more amazing features.

Thank you ❤️

Comments
  • add support for rapidfuzz

    add support for rapidfuzz

    The implementation used by rapidfuzz has the following algorithms

    • Jaro/JaroWinkler (fastest by a large margin)
    • Hamming (slightly slower than python-Levenshtein)
    • Levenshtein (similar fast to python-Levenshtein for very short strings and fastest for longer strings)

    Additionally it supports any sequence of hashable types (e.g. lists of strings) and not only text

    Here is the benchmark result:

    # Faster than textdistance:
    
    | algorithm          | library                 | function                     |        time |
    |--------------------+-------------------------+------------------------------+-------------|
    | DamerauLevenshtein | jellyfish               | damerau_levenshtein_distance | 0.0181046   |
    | DamerauLevenshtein | pyxdameraulevenshtein   | damerau_levenshtein_distance | 0.030925    |
    | Hamming            | Levenshtein             | hamming                      | 0.000351586 |
    | Hamming            | rapidfuzz.string_metric | hamming                      | 0.00040442  |
    | Hamming            | jellyfish               | hamming_distance             | 0.0143502   |
    | Jaro               | rapidfuzz.string_metric | jaro_similarity              | 0.000749048 |
    | Jaro               | jellyfish               | jaro_similarity              | 0.0152322   |
    | JaroWinkler        | rapidfuzz.string_metric | jaro_winkler_similarity      | 0.000776006 |
    | JaroWinkler        | jellyfish               | jaro_winkler_similarity      | 0.0157833   |
    | Levenshtein        | rapidfuzz.string_metric | levenshtein                  | 0.0010058   |
    | Levenshtein        | Levenshtein             | distance                     | 0.00103176  |
    | Levenshtein        | jellyfish               | levenshtein_distance         | 0.0147382   |
    | Levenshtein        | pylev                   | levenshtein                  | 0.14116     |
    Total: 13 libs.
    

    and the benchmark results when adding slightly longer strings:

    STMT = """
    func('text', 'test')
    func('qwer', 'asdf')
    func('a' * 15, 'b' * 15)
    func('a' * 30, 'b' * 30)
    """
    
    # Faster than textdistance:
    
    | algorithm          | library                 | function                     |        time |
    |--------------------+-------------------------+------------------------------+-------------|
    | DamerauLevenshtein | jellyfish               | damerau_levenshtein_distance | 0.0323887   |
    | DamerauLevenshtein | pyxdameraulevenshtein   | damerau_levenshtein_distance | 0.143235    |
    | Hamming            | Levenshtein             | hamming                      | 0.000489837 |
    | Hamming            | rapidfuzz.string_metric | hamming                      | 0.000517879 |
    | Hamming            | jellyfish               | hamming_distance             | 0.0182341   |
    | Jaro               | rapidfuzz.string_metric | jaro_similarity              | 0.00111363  |
    | Jaro               | jellyfish               | jaro_similarity              | 0.0201971   |
    | JaroWinkler        | rapidfuzz.string_metric | jaro_winkler_similarity      | 0.00105238  |
    | JaroWinkler        | jellyfish               | jaro_winkler_similarity      | 0.0206678   |
    | Levenshtein        | rapidfuzz.string_metric | levenshtein                  | 0.00138601  |
    | Levenshtein        | Levenshtein             | distance                     | 0.0034889   |
    | Levenshtein        | jellyfish               | levenshtein_distance         | 0.0232467   |
    | Levenshtein        | pylev                   | levenshtein                  | 0.599603    |
    Total: 13 libs.
    
    opened by maxbachmann 13
  • Add new DamerauLevenshtein... classes

    Add new DamerauLevenshtein... classes

    There are two versions of the Damerau-Levenshtein distance, as described in this Debian bug report: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=1018933 Some of the external libraries implement one of them, others the other.

    This PR splits introduces two different classes: DamerauLevenshteinRestricted and DamerauLevenshteinUnrestricted, with DamerauLevenshtein being the unrestricted version, so that it is clear what is intended.

    opened by juliangilbey 7
  • Ignore inconsistent timings on some comparison tests

    Ignore inconsistent timings on some comparison tests

    Two particular tests have timings that differ wildly between successive runs on arm64 architectures. This might be because some libraries take a long time to load or something like that - I don't know. But this patch turns off hypothesis's timing checks for these two tests. I'm going to apply it to Debian's package; you might or might not want to apply it upstream.

    opened by juliangilbey 5
  • Modify JaroWinkler boosting to match behaviour of jellyfish algorithm

    Modify JaroWinkler boosting to match behaviour of jellyfish algorithm

    Jellyfish has recently modified its JaroWinkler algorithm to allow for boosting even when one of the strings is shorter than 4 characters: https://github.com/jamesturk/jellyfish/commit/87f9679910eba0dad6a1f6019f03cbdffba28392. It is very unclear whether this is a good idea or not. But as it is, the tests now fail, as the internal and external algorithms give different results on a pair of strings such as ":" and ":0".

    This patch replicates the change that jellyfish has made, which will then allow the external tests to pass once again. It also modifies the expected value of the comparison "fog" and "frog" to match this new algorithm behaviour.

    If you do not wish to apply this patch, then the external tests will need modifying to exclude the case where either of the strings has length < 4.

    hacktoberfest-accepted 
    opened by juliangilbey 5
  • Possible correction to Monge-Elkan calculation

    Possible correction to Monge-Elkan calculation

    Might be wrong about this, but think the code for the Monge-Elkan algorithm needs to be corrected.

    If you look at the implementation in the py_stringmatching library on line 81 of https://github.com/anhaidgroup/py_stringmatching/blob/master/py_stringmatching/similarity_measure/monge_elkan.py sim = float(sum_of_maxes) / float(len(bag1)) which is essentially the mean max.

    But in the implementation for textdistance, the score is given on line 222 of https://github.com/life4/textdistance/blob/master/textdistance/algorithms/token_based.py as
    sum(maxes) / len(seq) / len(maxes)

    I think the further division by len(maxes) isn't needed, and the line should just be sum(maxes) / len(seq)

    The change in the code could mess up tests elsewhere, so I'm not changing anything else. But thought I should bring this to your attention.

    Below is some code and differing scores I got in textdistance and py_stringmatching.

    # score in textdistance
    from textdistance import MongeElkan, levenshtein
    ALG = MongeElkan
    score = ALG(algorithm=levenshtein,qval=None,symmetric=False).similarity('Good Times!', "The Good Times and The Bad Ones")
    score
    # Got 2.25
    
    #score in py_stringmatching
    from py_stringmatching import MongeElkan
    from py_stringmatching import Levenshtein as Levenshtein_2
    ALG_2 = MongeElkan(sim_func=Levenshtein_2().get_raw_score)
    source = 'Good Times!'
    source_split = source.split()
    target = "The Good Times and The Bad Ones"
    target_split = target.split()
    score2 = ALG_2.get_raw_score(source_split, target_split)
    score2
    # got 5.5
    
    opened by shijithpk 3
  • Handle newer versions of abydos and jellyfish

    Handle newer versions of abydos and jellyfish

    abydos has changed its interface for distance metrics quite significantly, and jellyfish has changed the names of the functions. This patch addresses both of these issues.

    opened by juliangilbey 3
  • Ensure that maximum normalised distance is <= 1 and ...

    Ensure that maximum normalised distance is <= 1 and ...

    textdistance is currently failing its test-suite on arm64 machines with Python 3.10, which is causing me problems on Debian. I have managed to track down the first of these bugs (and there are at least two more to come): there are some algorithms that use upper() before comparing the strings. As noted in the code already, though these algorithms were designed for English (ASCII only), this can cause upper() to change the length of the string if using non-English characters. And hypothesis does this when testing. This can result in the normalised distance being greater than 1. This patch addresses this by ensuring that the distance returned from the relevant algorithms is no greater than self.maximum().

    A second issue which arose when doing this was calculating the maximum distance for Editex(); the current function for calculating the maximum does not give the correct answer if match_cost > mismatch_cost, for example. But this would be a silly situation: why would we penalise matching characters more than mismatching ones? There are two ways of resolving this: the first is to calculate the maximum distance using max(match_cost, group_cost, mismatch_cost), the second is to force the inequalities match_cost <= group_cost <= mismatch_cost. I have gone for the latter option in this patch.

    All being well, there will be more patches to come in the next few weeks as I get to the bottom of them!

    opened by juliangilbey 2
  • update rapidfuzz

    update rapidfuzz

    update rapidfuzz to the latest version which provides a damerau levenshtein implementation. It is the fastest of the supported libraries:

    | algorithm          | library                               | function                     |        time |
    |--------------------+---------------------------------------+------------------------------+-------------|
    | DamerauLevenshtein | rapidfuzz.distance.DamerauLevenshtein | distance                     | 0.00267046  |
    | DamerauLevenshtein | jellyfish                             | damerau_levenshtein_distance | 0.022479    |
    | DamerauLevenshtein | pyxdameraulevenshtein                 | damerau_levenshtein_distance | 0.0393475   |
    | DamerauLevenshtein | **textdistance**                      | DamerauLevenshtein           | 0.589098    |
    

    In addition it is the only implementation which only requires linear memory.

    opened by maxbachmann 1
  • Fix numpy types warnings

    Fix numpy types warnings

    Basic types have been deprecated in numpy 1.20. Here are the full warnings:

    DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
      Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
    
    DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
      Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
    

    I don’t know the code enough to assess if the specific numpy types are required though.

    opened by ArchangeGabriel 1
  • Fix a setuptools warning

    Fix a setuptools warning

    UserWarning: Usage of dash-separated 'description-file' will not be supported in future versions. Please use the underscore name 'description_file' instead

    opened by ArchangeGabriel 1
  • Fix README links

    Fix README links

    Hi,

    Noticed that the Travis CI link was wrong. Then found a few more links that appear to reference an old repository.

    This PR tries to correct the links by replacing orsinium by life4 in some URL's.

    And thanks for the great project, Bruno

    opened by kinow 1
Releases(4.5.0)
Owner
Life4
Original cool Open Source projects
Life4
ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体

ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体,包括上市公司所属行业关系、行业上级关系、产品上游原材料关系、产品下游产品关系、公司主营产品、产品小类共6大类。 上市公司4,654家,行业511个,产品95,559条、上游材料56,824条,上级行业480条,下游产品390条,产品小类52,937条,所属行业3,946条。

liuhuanyong 415 Jan 06, 2023
DeepAmandine is an artificial intelligence that allows you to talk to it for hours, you won't know the difference.

DeepAmandine This is an artificial intelligence based on GPT-3 that you can chat with, it is very nice and makes a lot of jokes. We wish you a good ex

BuyWithCrypto 3 Apr 19, 2022
Pipeline for training LSA models using Scikit-Learn.

Latent Semantic Analysis Pipeline for training LSA models using Scikit-Learn. Usage Instead of writing custom code for latent semantic analysis, you j

Dani El-Ayyass 23 Sep 05, 2022
Tools for curating biomedical training data for large-scale language modeling

Tools for curating biomedical training data for large-scale language modeling

BigScience Workshop 242 Dec 25, 2022
In this Notebook I've build some machine-learning and deep-learning to classify corona virus tweets, in both multi class classification and binary classification.

Hello, This Notebook Contains Example of Corona Virus Tweets Multi Class Classification. - Classes is: Extremely Positive, Positive, Extremely Negativ

Khaled Tofailieh 3 Dec 06, 2022
Nmt - TensorFlow Neural Machine Translation Tutorial

Neural Machine Translation (seq2seq) Tutorial Authors: Thang Luong, Eugene Brevdo, Rui Zhao (Google Research Blogpost, Github) This version of the tut

6.1k Dec 29, 2022
A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

Libo Qin 132 Nov 25, 2022
Fastseq 基于ONNXRUNTIME的文本生成加速框架

Fastseq 基于ONNXRUNTIME的文本生成加速框架

Jun Gao 9 Nov 09, 2021
Pangu-Alpha for Transformers

Pangu-Alpha for Transformers Usage Download MindSpore FP32 weights for GPU from here to data/Pangu-alpha_2.6B.ckpt Activate MindSpore environment and

One 5 Oct 01, 2022
ThinkTwice: A Two-Stage Method for Long-Text Machine Reading Comprehension

ThinkTwice ThinkTwice is a retriever-reader architecture for solving long-text machine reading comprehension. It is based on the paper: ThinkTwice: A

Walle 4 Aug 06, 2021
Production First and Production Ready End-to-End Keyword Spotting Toolkit

Production First and Production Ready End-to-End Keyword Spotting Toolkit

223 Jan 02, 2023
Kestrel Threat Hunting Language

Kestrel Threat Hunting Language What is Kestrel? Why we need it? How to hunt with XDR support? What is the science behind it? You can find all the ans

Open Cybersecurity Alliance 201 Dec 16, 2022
A fast, efficient universal vector embedding utility package.

Magnitude: a fast, simple vector embedding utility library A feature-packed Python package and vector storage file format for utilizing vector embeddi

Plasticity 1.5k Jan 02, 2023
Collection of useful (to me) python scripts for interacting with napari

Napari scripts A collection of napari related tools in various state of disrepair/functionality. Browse_LIF_widget.py This module can be imported, for

5 Aug 15, 2022
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective

InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective This is the official code base for our ICLR 2021 paper

AI Secure 71 Nov 25, 2022
NLP Core Library and Model Zoo based on PaddlePaddle 2.0

PaddleNLP 2.0拥有丰富的模型库、简洁易用的API与高性能的分布式训练的能力,旨在为飞桨开发者提升文本建模效率,并提供基于PaddlePaddle 2.0的NLP领域最佳实践。

6.9k Jan 01, 2023
🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Hugging Face 77.1k Dec 31, 2022
A benchmark for evaluation and comparison of various NLP tasks in Persian language.

Persian NLP Benchmark The repository aims to track existing natural language processing models and evaluate their performance on well-known datasets.

Mofid AI 68 Dec 19, 2022
NLP library designed for reproducible experimentation management

Welcome to the Transfer NLP library, a framework built on top of PyTorch to promote reproducible experimentation and Transfer Learning in NLP You can

Feedly 290 Dec 20, 2022