Kaggle DSTL Satellite Imagery Feature Detection

Overview

DSTL

https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection/

Note: this repo is not supported. License is MIT.

Object types

Note that labels here are 1 less than in submission file:

  • 0: Buildings - large building, residential, non-residential, fuel storage facility, fortified building
  • 1: Misc. Manmade structures
  • 2: Road
  • 3: Track - poor/dirt/cart track, footpath/trail
  • 4: Trees - woodland, hedgerows, groups of trees, standalone trees
  • 5: Crops - contour ploughing/cropland, grain (wheat) crops, row (potatoes, turnips) crops
  • 6: Waterway
  • 7: Standing water
  • 8: Vehicle Large - large vehicle (e.g. lorry, truck, bus), logistics vehicle
  • 9: Vehicle Small - small vehicle (car, van), motorbike

General approach

UNet network with batch-normalization added, training with Adam optimizer with a loss that is a sum of 0.1 cross-entropy and 0.9 dice loss. Input for UNet was a 116 by 116 pixel patch, output was 64 by 64 pixels, so there were 16 additional pixels on each side that just provided context for the prediction. Batch size was 128, learning rate was set to 0.0001 (but loss was multiplied by the batch size). Learning rate was divided by 5 on the 25-th epoch and then again by 5 on the 50-th epoch, most models were trained for 70-100 epochs. Patches that formed a batch were selected completely randomly across all images. During one epoch, network saw patches that covered about one half of the whole training set area. Best results for individual classes were achieved when training on related classes, for example buildings and structures, roads and tracks, two kinds of vehicles.

Augmentations included small rotations for some classes (±10-25 degrees for houses, structures and both vehicle classes), full rotations and vertical/horizontal flips for other classes. Small amount of dropout (0.1) was used in some cases. Alignment between channels was fixed with the help of cv2.findTransformECC, and lower-resolution layers were upscaled to match RGB size. In most cases, 12 channels were used (RGB, P, M), while in some cases just RGB and P or all 20 channels made results slightly better.

Validation

Validation was very hard, especially for both water and both vehicle classes. In most cases, validation was performed on 5 images (6140_3_1, 6110_1_2, 6160_2_1, 6170_0_4, 6100_2_2), while other 20 were used for training. Re-training the model with the same parameters on all 25 images improved LB score.

Some details

  • This setup provides good results for small-scale classes (houses, structures, small vehicles), reasonable results for most other classes and overfits quite badly on waterway.
  • Man-made structures performed significantly better if training polygons were made bigger by 0.5 pixel before producing training masks.
  • For some classes (e.g. vehicles), it helped a bit to make the first downscaling in UNet 4x instead of default 2x, and also made training 1.5x faster.
  • Averaging of predictions (of one model) with small shifts (1/3 of the 64 pixel step) were used for some classes.
  • Predictions on the edges of the input image (closer than 16 pixels to the border) were bad for some classes and were left empty in this case.
  • All models were implemented in pytorch, training for 70 epochs took about 5 hours, submission generation took about 30 minutes without averaging, or about 5 hours with averaging.

Other things tried

A lot of things that either did not bring noticeable improvements, or made things worse:

  • Losses: jaccard instead of dice, trying to predict distance to the border of the objects.
  • Color augmentations.
  • Oversampling of rare classes.
  • Passing lower-resolution channels directly to lower-resolution layers in UNet.
  • Varying UNet filter sizes, activations, number of layers and upscale/downscale steps, using deconvolutions instead of upsampling.
  • Learning rate decay.
  • Models: VGG-like modules for UNet, SegNet, DenseNet

Object types stats

Area by classs:

im_id 0 1 2 3 4 5 6 7 8 9
6010_1_2 0.0% 0.0653% 0.0% 1.3345% 4.5634% 0.0% 0.0% 0.0% 0.0% 0.0%
6010_4_2 0.0% 0.0% 0.0% 1.9498% 12.3410% 0.0% 0.0% 0.0% 0.0% 0.0%
6010_4_4 0.0% 0.0% 0.0% 0.0% 22.8556% 0.0% 0.0% 0.0% 0.0% 0.0%
6040_1_0 0.0% 0.0% 0.0% 1.4446% 8.0062% 0.0% 0.0% 0.0% 0.0% 0.0%
6040_1_3 0.0% 0.0% 0.0% 0.2019% 18.7376% 3.6610% 0.0% 0.0% 0.0% 0.0%
6040_2_2 0.0% 0.0% 0.0% 0.9581% 18.7348% 0.0% 0.0% 0.0% 0.0% 0.0%
6040_4_4 0.0% 0.0% 0.0% 1.8893% 2.9152% 0.0% 0.0% 0.0% 0.0% 0.0%
6060_2_3 0.1389% 0.3037% 0.0% 3.0302% 8.4519% 93.5617% 0.0% 0.0% 0.0% 0.0003%
6070_2_3 1.5524% 0.3077% 0.8135% 0.0% 16.0439% 0.0% 10.6325% 0.0543% 0.0% 0.0058%
6090_2_0 0.0% 0.0343% 0.0% 0.4072% 10.1105% 28.2399% 0.0% 0.3130% 0.0% 0.0008%
6100_1_3 8.7666% 2.7289% 2.2145% 12.2506% 6.2015% 2.6901% 0.0% 0.6839% 0.0110% 0.0459%
6100_2_2 3.1801% 0.8188% 1.1903% 3.7222% 7.6089% 44.3148% 1.8823% 0.0512% 0.0100% 0.0242%
6100_2_3 8.2184% 1.4110% 1.2099% 9.5948% 7.5323% 0.0% 0.0% 0.0603% 0.0148% 0.0661%
6110_1_2 13.1314% 2.8616% 0.4192% 4.1817% 3.3154% 49.7792% 0.0% 0.1527% 0.0% 0.0065%
6110_3_1 4.5495% 1.2561% 3.6302% 2.8221% 5.4133% 57.6089% 0.0% 0.5531% 0.0181% 0.0253%
6110_4_0 2.4051% 0.5732% 1.8409% 2.8067% 5.7379% 80.7666% 0.0% 1.4210% 0.0136% 0.0017%
6120_2_0 1.7980% 0.7257% 0.8505% 4.4026% 5.6352% 79.5910% 0.0% 0.0% 0.0138% 0.0041%
6120_2_2 20.6570% 2.0389% 4.2547% 8.6533% 4.4347% 10.2929% 0.0% 0.2859% 0.0076% 0.1560%
6140_1_2 12.9211% 2.4488% 0.3538% 4.1461% 3.1027% 49.5910% 0.0% 0.1415% 0.0% 0.0086%
6140_3_1 5.2015% 1.4349% 3.4252% 2.5189% 5.8852% 57.3959% 0.0% 0.4664% 0.0042% 0.0358%
6150_2_3 0.0% 0.6055% 0.0% 3.0197% 13.5187% 80.6649% 0.0% 0.0% 0.0% 0.0%
6160_2_1 0.0% 0.0% 0.0% 2.7986% 10.2713% 0.0% 0.0% 0.0% 0.0% 0.0%
6170_0_4 0.0% 0.0016% 0.0% 0.1994% 24.8913% 0.0% 0.0% 0.0152% 0.0% 0.0%
6170_2_4 0.0% 0.0011% 0.0% 2.5070% 7.7844% 49.5326% 0.0% 0.0089% 0.0% 0.0%
6170_4_1 0.0% 0.0% 0.0% 0.1349% 20.2214% 0.0% 0.0% 0.0% 0.0% 0.0%

Making a submission

Train a CNN (choose number of epochs and other hyper-params running without --all):

$ ./train.py checkpoint-folder --all --hps dice_loss=10,n_epochs=70

Make submission file (check hyperparameters doing a submission for the model trained with validation by running with --validation *value* and optionally --valid-polygons):

$ ./make_submission.py checkpoint-folder submission.csv.gz

Finally, use ./merge_submission.py to produce the final submission.

This just gives a general idea, real submissions were generated with different hyperparameters for different classes, and all above commands have more options that are documented in the commands themselves (use --help, check the code if in doubt).

Owner
Konstantin Lopuhin
Konstantin Lopuhin
💡 Type hints for Numpy

Type hints with dynamic checks for Numpy! (❒) Installation pip install nptyping (❒) Usage (❒) NDArray nptyping.NDArray lets you define the shape and

Ramon Hagenaars 377 Dec 28, 2022
This repository contains the implementation of the HealthGen model, a generative model to synthesize realistic EHR time series data with missingness

HealthGen: Conditional EHR Time Series Generation This repository contains the implementation of the HealthGen model, a generative model to synthesize

0 Jan 20, 2022
CSD: Consistency-based Semi-supervised learning for object Detection

CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation

80 Dec 15, 2022
Computer Vision Paper Reviews with Key Summary of paper, End to End Code Practice and Jupyter Notebook converted papers

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 The repository provides 100+ Pap

Jonathan Choi 2 Mar 17, 2022
Approaches to modeling terrain and maps in python

topography 🌎 Contains different approaches to modeling terrain and topographic-style maps in python Features Inverse Distance Weighting (IDW) A given

John Gutierrez 1 Aug 10, 2022
Expert Finding in Legal Community Question Answering

Expert Finding in Legal Community Question Answering Arian Askari, Suzan Verberne, and Gabriella Pasi. Expert Finding in Legal Community Question Answ

Arian Askari 3 Oct 31, 2022
A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation

MatConvNet implementation of the FCN models for semantic segmentation This package contains an implementation of the FCN models (training and evaluati

VLFeat.org 175 Feb 18, 2022
Pytorch Lightning Implementation of SC-Depth Methods.

SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ

JiaWang Bian 216 Dec 30, 2022
Human4D Dataset tools for processing and visualization

HUMAN4D: A Human-Centric Multimodal Dataset for Motions & Immersive Media HUMAN4D constitutes a large and multimodal 4D dataset that contains a variet

tofis 15 Nov 09, 2022
imbalanced-DL: Deep Imbalanced Learning in Python

imbalanced-DL: Deep Imbalanced Learning in Python Overview imbalanced-DL (imported as imbalanceddl) is a Python package designed to make deep imbalanc

NTUCSIE CLLab 19 Dec 28, 2022
PyQt6 configuration in yaml format providing the most simple script.

PyamlQt(ぴゃむるきゅーと) PyQt6 configuration in yaml format providing the most simple script. Requirements yaml PyQt6, ( PyQt5 ) Installation pip install Pya

Ar-Ray 7 Aug 15, 2022
Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

No RL No Simulation (NRNS) Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating NRNS is a heriarch

Meera Hahn 20 Nov 29, 2022
A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).

SimGNN ⠀⠀⠀ A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019). Abstract Graph similarity s

Benedek Rozemberczki 534 Dec 25, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

OpenMMLab 688 Jan 06, 2023
PyTorch deep learning projects made easy.

PyTorch Template Project PyTorch deep learning project made easy. PyTorch Template Project Requirements Features Folder Structure Usage Config file fo

Victor Huang 3.8k Jan 01, 2023
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 01, 2022
Towards Long-Form Video Understanding

Towards Long-Form Video Understanding Chao-Yuan Wu, Philipp Krähenbühl, CVPR 2021 [Paper] [Project Page] [Dataset] Citation @inproceedings{lvu2021,

Chao-Yuan Wu 69 Dec 26, 2022
Using Tensorflow Object Detection API to detect Waymo open dataset

Waymo-2D-Object-Detection Using Tensorflow Object Detection API to detect Waymo open dataset Result CenterNet Training Loss SSD ResNet Training Loss C

76 Dec 12, 2022